In the in vitro rat dentate gyrus, norepinephrine-induced long-lasting potentiation (NELLP) and long-term potentiation (LTP) of responses to perforant path stimulation were blocked by the N-methyl-D-aspartate (NMDA) receptor antagonists, D(-)-2-amino-5-phosphonovaleric acid (D(-)APV) and 3-[(+/-)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid (CPP). CPP and D(-)APV, but not L(+)APV, also depressed the orthodromic population spike but not the antidromic spike, which suggests that these receptors may function in low-frequency evoked activity of granule cells. We conclude that NELLP, like LTP in the dentate gyrus, requires NMDA receptor activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-8993(89)91199-2 | DOI Listing |
Neurochem Res
January 2025
Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China.
Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.
View Article and Find Full Text PDFJ Pain Res
January 2025
Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea.
Background: The tooth exhibits increased sensitivity to noxious stimuli due to the dense innervation of thin myelinated Aδ fibers and unmyelinated C fibers within the dental pulp. While prior research has identified dynorphin expression in layers I-II of the dorsal horn across the spinal cord in various pain models, its functional role in trigeminal nociception, including tooth pain, remains underexplored. This study examines the potential role of dynorphin in the nociceptive processing of dental stimuli.
View Article and Find Full Text PDFCureus
December 2024
Clinical Research, National Institute of Neurology and Neurosurgery, Mexico City, MEX.
Anti-NMDA (N-methyl-D-aspartate) receptor encephalitis (ANRE) is a rare autoimmune condition targeting brain receptors, often linked to ovarian tumors in young women. In severe cases, it can lead to status epilepticus, but in sporadic cases, it may progress to super-refractory status epilepticus (SRSE), a dangerous state of continuous or repetitive seizures demanding urgent medical attention that continues or recurs more than 24 hours after the initiation of anesthetic therapy. We present a case report of anti-NMDA receptor limbic encephalitis-triggered SRSE terminated with vagus nerve stimulation (VNS) and titrated to high stimulation parameters in the immediate postoperative period.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Neurology, Huashan Hospital, Fudan University and Institute of Neurology, Fudan University, Shanghai, China.
We report a case of optic neuritis (ON) secondary to autoimmune encephalitis (AE) in a patient with concomitant antibodies to N-methyl-D-aspartate receptor (NMDAR), gamma-aminobutyric acid-B receptor (GABAR), and myelin oligodendrocyte glycoprotein (MOG). The patient exhibited a constellation of symptoms, including vision loss, seizures, mental and behavioral disorders, cognitive impairment, and speech abnormalities. At the two-year follow-up, the patient's symptoms had abated entirely.
View Article and Find Full Text PDFBiochem Soc Trans
January 2025
Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.
Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!