A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Noncovalent hydrogel beads as microcarriers for cell culture. | LitMetric

Noncovalent hydrogel beads as microcarriers for cell culture.

Angew Chem Int Ed Engl

B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden (Germany).

Published: March 2015

Hydrogel beads as microcarriers could have many applications in biotechnology. However, bead formation by noncovalent cross-linking to achieve high cell compatibility by avoiding chemical reactions remains challenging because of rapid gelation rates and/or low stability. Here we report the preparation of homogeneous, tunable, and robust hydrogel beads from peptide-polyethylene glycol conjugates and oligosaccharides under mild, cell-compatible conditions using a noncovalent crosslinking mechanism. Large proteins can be released from beads easily. Further noncovalent modification allows for bead labeling and functionalization with various compounds. High survival rates of embedded cells were achieved under standard cell culture conditions and after freezing the beads, demonstrating its suitability for encapsulating and conserving cells. Hydrogel beads as functional system have been realized by generating protein-producing microcarriers with embedded eGFP-secreting insect cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201411400DOI Listing

Publication Analysis

Top Keywords

hydrogel beads
16
beads microcarriers
8
cell culture
8
beads
6
noncovalent
4
noncovalent hydrogel
4
microcarriers cell
4
culture hydrogel
4
microcarriers applications
4
applications biotechnology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!