Purpose: Little is known about the physiological mechanisms underlying the reported therapeutic effects of transorbital alternating current stimulation (ACS) in vision restoration, or the origin of the recorded electrically evoked potentials (EEPs) during such stimulation. We examined the issue of EEP origin and electrode configuration for transorbital ACS and characterized the physiological responses to CS in different structures of the visual system.
Methods: We recorded visually evoked potentials (VEPs) and EEPs from the rat retina, visual thalamus, tectum, and visual cortex. The VEPs were evoked by light flashes and EEPs were evoked by electric stimuli delivered by two electrodes placed either together on the same eye or on the eyeball and in the neck. Electrically evoked potentials and VEPs were recorded before and after bilateral intraorbital injections of tetrodotoxin that blocked retinal ganglion cell activity.
Results: Tetrodotoxin abolished VEPs at all levels in the visual pathway, confirming successful blockage of ganglion cell activity. Tetrodotoxin also abolished EEPs and this effect was independent of the stimulating electrode configurations.
Conclusions: Transorbital electrically evoked responses in the visual pathway, irrespective of reference electrode placement, are initiated by activation of the retina and not by passive conductance and direct activation of neurons in other visual structures. Thus, placement of stimulating electrodes exclusively around the eyeball may be sufficient to achieve therapeutic effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.14-15617 | DOI Listing |
Bio Protoc
January 2025
Department of Biomedicine, University of Bergen, Bergen, Norway.
During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance.
View Article and Find Full Text PDFCureus
December 2024
Division of Dental Anesthesiology, Faculty of Dentistry Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JPN.
Background There are many reports of anatomical and physiological studies on trigeminal ganglion neurons, but few studies have analyzed temporal changes in the excitation of the trigeminal ganglion. This study aimed to establish an experimental system for spatial and temporal imaging analysis of the excitatory dynamics of trigeminal ganglion cells evoked by stimulation of a peripheral branch of the trigeminal nerve. Methods After excision of the trigeminal ganglion with the inferior alveolar nerve (IAN) from Sprague Dawley rats (seven to nine weeks old), 400-µm-thick slices of the trigeminal ganglion with the IAN were prepared.
View Article and Find Full Text PDFGait Posture
December 2024
School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada. Electronic address:
Background: To maintain standing balance, vestibular cues are processed and integrated with other sensorimotor signals to produce appropriate motor adjustments. Whole-body vestibular-driven postural responses are context-dependent and transformed based upon head and foot posture. Previous reports indicate the importance of intrinsic foot muscles during standing, but it is unclear how vestibular-driven responses of these muscles are modulated by alterations in stability and head posture.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Department of Physiology and Department of Electrical and Computer System Engineering, Monash University - Clayton Campus, Wellington Rd, Melbourne, Victoria, 3800, AUSTRALIA.
Development of cortical visual prostheses requires optimization of evoked responses to electrical stimulation to reduce charge requirements and improve safety, efficiency, and efficacy. One promising approach is timing stimulation to the local field potential (LFP), where action potentials have been found to occur preferentially at specific phases. To assess the relationship between electrical stimulation and the phase of the LFP, we recorded action potentials from primary (V1) and secondary (V2) visual cortex in marmosets while delivering single-pulse electrical microstimulation at different phases of the local field potential.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
January 2025
The Bionics Institute, 384-388 Albert St, East Melbourne, VIC, 3002, Australia.
Purpose: Variations in neural survival along the cochlear implant electrode array leads to off-place listening, resulting in poorer speech understanding outcomes for recipients. Therefore, it is important to develop and compare clinically viable tests to identify these patient-specific intra-cochlear neural differences.
Methods: Nineteen experienced cochlear implant recipients (9 males and 10 females) were recruited for this study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!