Purpose: This study was undertaken to determine the diagnostic capabilities of diffusion-weighted magnetic resonance imaging (DWI) in detecting ileal inflammation in Crohn's disease (CD), and to verify the correlation between the DWI sequences and the Harvey-Bradshaw index (HBI).

Materials And Methods: Twenty patients with an endoscopic-histological diagnosis of CD of the terminal ileum and MR enterography with DWI sequences and HBI were retrospectively selected. Disease activity was visually evaluated on the DWI sequences. In quantitative analysis, the apparent diffusion coefficient (ADC) of the terminal ileum was compared with that of normal ileal loops. Pearson's r was used to verify the correlation between the DWI findings and the HBI.

Results: On visual assessment, the accuracy, sensitivity and positive predictive value of DWI for the detection of inflammation were 100%. In the quantitative assessment, the ADC value of the disease-active terminal ileum was significantly lower (p < 0.00001) than that of normal ileal loops. A correlation was found between visual assessment of the terminal ileum with the DWI sequences and HBI; no correlation was found between ADC of the terminal ileum and HBI.

Conclusion: DWI sequences may be useful in differentiating actively inflamed small bowel segments from normal small bowel in CD. Though partial, the correlation between DWI sequences and HBI confirms the utility of this technique in the study of patients with CD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11547-015-0502-8DOI Listing

Publication Analysis

Top Keywords

dwi sequences
24
terminal ileum
20
small bowel
12
correlation dwi
12
sequences hbi
12
dwi
9
crohn's disease
8
ileal inflammation
8
verify correlation
8
adc terminal
8

Similar Publications

Radiomic signatures of brain metastases on MRI: utility in predicting pathological subtypes of lung cancer.

Transl Cancer Res

December 2024

Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.

Background: The pathological sub-classification of lung cancer is crucial in diagnosis, treatment and prognosis for patients. Quick and timely identification of pathological subtypes from imaging examinations rather than histological tests could help guiding therapeutic strategies. The aim of the study is to construct a non-invasive radiomics-based model for predicting the subtypes of lung cancer on brain metastases (BMs) from multiple magnetic resonance imaging (MRI) sequences.

View Article and Find Full Text PDF

Objectives: This study aimed to compare apparent diffusion coefficient (ADC) values derived from diffusion-weighted imaging (DWI) of different Borrmann types of advanced gastric cancer (AGC) and correlate these ADC values with Ki-67 expression and serum CEA levels in AGC.

Methods: A total of 84 patients with AGC who underwent DWI of the upper abdomen before tumor resection in our hospital between June 2014 and July 2018 were included in the present study. DWI was obtained with a single-shot echo planar imaging sequence in the axial plane (b values: 0, 100, 700 and 1000 s/mm).

View Article and Find Full Text PDF

Audiovisual Breathing Guidance for Improved Image Quality and Scan Efficiency of T2- and Diffusion-Weighted Liver MRI.

Invest Radiol

January 2025

From the Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany (N.M., A.I., A.L., L.B., T.D., D. Kravchenko, D. Kuetting, C.C.P., J.A.L.); Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany (N.M., A.I., L.B., D. Kravchenko, D. Kuetting, J.A.L.); Philips Healthcare, Hamburg, Germany (C.K.); Philips Medical Systems, Eindhoven, the Netherlands (A.H.-M.); and Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany (C.Y.).

Objectives: Impaired image quality and long scan times frequently occur in respiratory-triggered sequences in liver magnetic resonance imaging (MRI). We evaluated the impact of an in-bore active breathing guidance (BG) application on image quality and scan time of respiratory-triggered T2-weighted (T2) and diffusion-weighted imaging (DWI) by comparing sequences with standard triggering (T2S and DWIS) and with BG (T2BG and DWIBG).

Materials And Methods: In this prospective study, random patients with clinical indications for liver MRI underwent 3 T MRI with standard and BG acquisitions.

View Article and Find Full Text PDF

Background: To develop and validate a clinical-radiomics model for preoperative prediction of lymphovascular invasion (LVI) in rectal cancer.

Methods: This retrospective study included data from 239 patients with pathologically confirmed rectal adenocarcinoma from two centers, all of whom underwent MRI examinations. Cases from the first center (n = 189) were randomly divided into a training set and an internal validation set at a 7:3 ratio, while cases from the second center (n = 50) constituted the external validation set.

View Article and Find Full Text PDF

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!