While the evolution of hydrogen gas is often a troublesome process accompanying electrodeposition, this feature can be exploited to template the growth of highly porous surfaces. This process, known as the dynamic hydrogen bubble template (DHBT) method, can be utilised to create a wide range of macroporous films with nanostructured pore walls. This feature article presents an overview of the status of the DHBT technique, highlighting preparation techniques and emerging applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cc06638c | DOI Listing |
Sci Rep
December 2024
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Polymer electrolyte membrane water electrolyzers (PEMWEs) are a critical technology for efficient hydrogen production to decarbonize fuels and industrial feedstocks. To make hydrogen cost-effective, the overpotentials across the cell need to be decreased and platinum-group metal loading reduced. One overpotential that needs to be better understood is due to mass transport limitations from bubble formation within the porous transport layer (PTL) and anode catalyst layer (ACL), which can lead to a reduction in performance at typical operating current densities.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China.
Porous CuNi films are promising candidates for electrocatalytic water splitting, with their catalytic performance largely influenced by the crystallographic structure and chemical state. In this study, by employing a magnetic field-controlled bubble template-assisted electrodeposition method, CuNi films with a preferred Ni(111) crystal orientation were synthesized. Moreover, adjusting the magnetic field direction during deposition can affect the degree of preferred orientation and, consequently, the electrochemical activity of the films.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.
The gas-liquid-solid interface plays a crucial role in various electrochemical energy conversion devices, including fuel cells and electrolyzers. Understanding the effect of gas transfer on the electrochemistry at this three-phase interface is a grand challenge. Scanning electrochemical cell microscopy (SECCM) is an emerging technique for mapping the heterogeneity in electrochemical activity; it also inherently features a three-phase boundary at the nanodroplet cell.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.
AC plasmas directly excited within liquid hydrocarbons were investigated for the production of hydrogen and unsaturated C hydrocarbon in a recirculating liquid "jet" flow configuration. Arc discharges were excited at two different frequencies (60 Hz and 17.3 kHz) in C-C hydrocarbons (hexane, cyclohexane, benzene, toluene, and xylene) to produce H, CH, CH, and CH, along with liquid and solid carbon byproducts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!