KCNQ5 K(+) channels control hippocampal synaptic inhibition and fast network oscillations.

Nat Commun

1] Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Street 10, Berlin 13125, Germany [2] Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Street 10, Berlin 13125, Germany [3] NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, Berlin 10117, Germany.

Published: February 2015

KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) K(+) channels dampen neuronal excitability and their functional impairment may lead to epilepsy. Less is known about KCNQ5 (Kv7.5), which also displays wide expression in the brain. Here we show an unexpected role of KCNQ5 in dampening synaptic inhibition and shaping network synchronization in the hippocampus. KCNQ5 localizes to the postsynaptic site of inhibitory synapses on pyramidal cells and in interneurons. Kcnq5(dn/dn) mice lacking functional KCNQ5 channels display increased excitability of different classes of interneurons, enhanced phasic and tonic inhibition, and decreased electrical shunting of inhibitory postsynaptic currents. In vivo, loss of KCNQ5 function leads to reduced fast (gamma and ripple) hippocampal oscillations, altered gamma-rhythmic discharge of pyramidal cells and impaired spatial representations. Our work demonstrates that KCNQ5 controls excitability and function of hippocampal networks through modulation of synaptic inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms7254DOI Listing

Publication Analysis

Top Keywords

synaptic inhibition
12
kcnq5 channels
8
pyramidal cells
8
kcnq5
7
channels control
4
control hippocampal
4
hippocampal synaptic
4
inhibition
4
inhibition fast
4
fast network
4

Similar Publications

Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy.

Trends Neurosci

January 2025

Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany. Electronic address:

Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins.

View Article and Find Full Text PDF

Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the anterior insular cortex (aIC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic currents onto aIC-BLA projections would be facilitated as a consequence of retrieval of an ethanol-conditioned taste aversion (CTA).

View Article and Find Full Text PDF

An intra-brainstem circuitry for pain-induced inhibition of itch.

Neuroscience

January 2025

Center for Neuroscience, Indian Institute of Science, Bengaluru 560012, India. Electronic address:

Pain and itch are unpleasant and distinct sensations that give rise to behaviors such as reflexive withdrawal and scratching in humans and mice. Interestingly, it has been observed that pain modulate itch through the neural circuits housed in the brain and spinal cord. However, we are yet to fully understand the identities of, and mechanisms by which specific neural circuits mediate pain-induced modulation of itch.

View Article and Find Full Text PDF

Purpose: Temporal lobe epilepsy (TLE) is a brain network disorder closely associated with synaptic loss and has a genetic basis. However, the in vivo whole-brain synaptic changes at the network-level and the underlying gene expression patterns in patients with TLE remain unclear.

Methods: In this study, we utilized a positron emission tomography with the synaptic vesicle glycoprotein 2 A radioligand [F]SynVesT-1 cohort and two independent transcriptome datasets to investigate the topological properties of the synaptic density similarity network (SDSN) in TLE and its correlation with significantly dysregulated risk genes.

View Article and Find Full Text PDF

Enhancing Neuron Activity Promotes Functional Recovery by Inhibiting Microglia-Mediated Synapse Elimination After Stroke.

Stroke

January 2025

New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.S., H.W., C.W., G.L., M.H., H.Z., F.H., H.L.).

Background: Activating glutamatergic neurons in the ipsilesional motor cortex can promote functional recovery after stroke. However, the underlying molecular mechanisms remain unclear. Clarifying key molecular mechanisms involved in recovery could help understand the development of neuromodulation strategies after stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!