AI Article Synopsis

  • The study examines the size of the largest marine megafauna, noting challenges in obtaining accurate measurements due to rarity and remoteness.
  • It reviews 25 species, documenting the largest known sizes, analyzing body size variation related to sex and environment, and identifying gaps in existing data.
  • The findings reveal significant variability in size distributions and provide allometric scaling equations for estimating sizes, while highlighting human impacts on size and geographic variations.

Article Abstract

What are the greatest sizes that the largest marine megafauna obtain? This is a simple question with a difficult and complex answer. Many of the largest-sized species occur in the world's oceans. For many of these, rarity, remoteness, and quite simply the logistics of measuring these giants has made obtaining accurate size measurements difficult. Inaccurate reports of maximum sizes run rampant through the scientific literature and popular media. Moreover, how intraspecific variation in the body sizes of these animals relates to sex, population structure, the environment, and interactions with humans remains underappreciated. Here, we review and analyze body size for 25 ocean giants ranging across the animal kingdom. For each taxon we document body size for the largest known marine species of several clades. We also analyze intraspecific variation and identify the largest known individuals for each species. Where data allows, we analyze spatial and temporal intraspecific size variation. We also provide allometric scaling equations between different size measurements as resources to other researchers. In some cases, the lack of data prevents us from fully examining these topics and instead we specifically highlight these deficiencies and the barriers that exist for data collection. Overall, we found considerable variability in intraspecific size distributions from strongly left- to strongly right-skewed. We provide several allometric equations that allow for estimation of total lengths and weights from more easily obtained measurements. In several cases, we also quantify considerable geographic variation and decreases in size likely attributed to humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304853PMC
http://dx.doi.org/10.7717/peerj.715DOI Listing

Publication Analysis

Top Keywords

intraspecific size
12
ocean giants
8
size
8
size variation
8
marine megafauna
8
largest marine
8
size measurements
8
intraspecific variation
8
body size
8
provide allometric
8

Similar Publications

Genome-resolved analysis of Serratia marcescens SMTT infers niche specialization as a hydrocarbon-degrader.

DNA Res

January 2025

Biochemistry Research Lab (Rm216), Dept. of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine. Trinidad and Tobago - West Indies.

Bacteria that are chronically exposed to high levels of pollutants demonstrate genomic and corresponding metabolic diversity that complement their strategies for adaptation to hydrocarbon-rich environments. Whole genome sequencing was carried out to infer functional traits of Serratia marcescens SMTT recovered from soil contaminated with crude oil. The genome size (Mb) was 5,013,981 with a total gene count of 4,842.

View Article and Find Full Text PDF

Three-quarters of the planet's land surface has been altered by humans, with consequences for animal ecology, movements and related ecosystem functioning. Species often occupy wide geographical ranges with contrasting human disturbance and environmental conditions, yet, limited data availability across species' ranges has constrained our understanding of how human pressure and resource availability jointly shape intraspecific variation of animal space use. Leveraging a unique dataset of 758 annual GPS movement trajectories from 375 brown bears (Ursus arctos) across the species' range in Europe, we investigated the effects of human pressure (i.

View Article and Find Full Text PDF
Article Synopsis
  • Sexual dimorphism complicates the creation of alpha taxonomic classifications in early hominin fossils.
  • The study explores factors influencing sexual dimorphism in primates, including body size differences, craniofacial traits tied to visual signaling, and growth patterns.
  • Focusing on Paranthropus boisei, the study warns that focusing on skeleton regions affected by sexual selection can lead to inaccurate taxonomic assessments.
View Article and Find Full Text PDF

Changes in blowfly (Diptera: Calliphoridae) wing morphology during succession in rat carcasses across forest and grassland habitats in South Brazil.

Insect Sci

December 2024

Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil.

Succession is one of the most extensively studied ecological phenomena, yet debates persist about the importance of dispersal and external factors in driving this process. We aimed to quantify the influence of these factors by investigating how wing-related traits evolve across succession of blowfly (Diptera: Calliphoridae) communities in South Brazil. Rat carrion was placed in both forest and grassland habitats, and the associated blowfly communities were documented throughout the decomposition process.

View Article and Find Full Text PDF

Boring bryozoans dissolve calcium carbonate substrates, leaving unique borehole traces. Depending on the shell type, borehole apertures and colony morphology can be diagnostic for distinguishing taxa, but to discriminate among species their combination with zooidal morphology is essential. All boring (endolithic) bryozoans are ctenostomes that, along with other boring taxa, are common in benthic communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!