Upconversion of rare Earth nanomaterials.

Annu Rev Phys Chem

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; email: ,

Published: April 2015

Rare earth nanomaterials, which feature long-lived intermediate energy levels and intraconfigurational 4f-4f transitions, are promising supporters for photon upconversion. Owing to their unique optical properties, rare earth upconversion nanomaterials have found applications in bioimaging, theranostics, photovoltaic devices, and photochemical reactions. Here, we review recent advances in the photon upconversion processes of these nanomaterials. We start by considering energy transfer models involved in the study of upconversion emissions, as well as well-established synthesis strategies to control the size and shape of rare earth upconversion nanomaterials. Progress in engineering energy transfer pathways, which play a dominant role in determining upconversion emission outputs, is then discussed. Lastly, representative optical applications of these materials are considered. The aim of this review is to provide inspiration for researchers to explore novel upconversion nanomaterials and extended optical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-physchem-040214-121344DOI Listing

Publication Analysis

Top Keywords

rare earth
16
upconversion nanomaterials
12
upconversion
8
earth nanomaterials
8
photon upconversion
8
earth upconversion
8
energy transfer
8
optical applications
8
nanomaterials
6
upconversion rare
4

Similar Publications

Unusual Cause of Mid Myocardial Late Gadolinium Enhancement at Cardiac MRI.

Radiol Cardiothorac Imaging

February 2025

From the Department of Radiology, Narayana Institute of Cardiac Sciences, Bangalore 560099, India (S.G., V.R.); and Department of Radiology, Amrita Institute of Medical Sciences and Research Centre, Kochi, India (R.R.).

Cardiac MRI is the reference standard for identifying and evaluating myocardial pathologic conditions. Late gadolinium enhancement characteristics provide an excellent guide in classifying disease and triaging patients. Anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA) is an uncommon congenital anomaly.

View Article and Find Full Text PDF

Additive manufacturing (AM) of magnetic materials has recently attracted increasing interest for various applications but is often limited by the high cost and supply chain risks of rare-earth-element (REE) magnetic precursors. Recent advances in nanomanufacturing have enabled the development of rare-earth-free (REF) magnetic materials, such as spinel ferrites, hexaferrites, MnAl, MnBi, Alnico, FePt, and iron oxides/nitrides, which offer promising alternatives for printing high-performance magnetic devices. This review provides a detailed overview of the latest developments in REF magnetic materials, covering both synthesis strategies of REF magnetic materials/nanomaterials and their integration into AM processes.

View Article and Find Full Text PDF

An Optoelectronic Sensing Real-Time Glucose Detection Film Using Photonic Crystal Enhanced Rare Earth Fluorescence and Additive Manufacturing.

Small

January 2025

State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.

In this research, a novel detection method employing rare-earth upconversion nanoparticle (UCNP) as the core, coated with MnO nanosheets is designed, which formed a color and fluorescence dual-responsive UCNP composite material, MnO-modified NaYF:Yb,Tm@NaYF. By enabling both colorimetric and fluorescence methods simultaneously, this composite material allows for the detection of glucose concentration under different conditions, while exhibiting strong resistance to environmental interference, chemical stability, and accuracy. To further enhance the sensitivity of the detection method, a photonic crystals (PCs)-PDMS array where polymethyl methacrylate PCs are deposited onto a substrate composed of PDMS-glass slice with hydrophobic surfaces is developed.

View Article and Find Full Text PDF

Ubiquitous white light-emitting diodes (LEDs) possess optical properties that differ from those of natural light. This difference can impact visual perception and biological functions, thus potentially affecting eye health. Myopia, which leads to visual impairments and potentially irreversible vision loss or blindness, is the most prevalent refractive error worldwide.

View Article and Find Full Text PDF

The self-assembly of hydrophobic organic phototherapeutic agents (OPTAs) with expansive planar structures into nanoparticles (NPs) represents a pivotal strategy to bolster their biocompatibility. However, the tight molecular packing within these NPs significantly influences the generation of reactive oxygen species (ROS) and the photothermal conversion efficiency (PCE), posing a substantial hurdle to elevating the efficacy of photodynamic therapy (PDT) and photothermal therapy (PTT) for such NPs. In this article, three OPTAs by donor engineering are synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!