Homogeneous coordinates in motion correction.

Magn Reson Med

University of Hawaii, Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii, USA.

Published: January 2016

Purpose: Prospective motion correction for MRI and other imaging modalities are commonly based on the assumption of affine motion, i.e., rotations, shearing, scaling and translations. In addition it often involves transformations between different reference frames, especially for applications with an external tracking device. The goal of this work is to develop a computational framework for motion correction based on homogeneous transforms.

Theory And Methods: The homogeneous representation of affine transformations uses 4 × 4 transformation matrices applied to four-dimensional augmented vectors. It is demonstrated how homogenous transforms can be used to describe the motion of slice objects during an MRI scan. Furthermore, we extend the concept of homogeneous transforms to gradient and k-space vectors, and show that the fourth dimension of an augmented k-space vector encodes the complex phase of the corresponding signal sample due to translations.

Results: The validity of describing motion tracking in real space and k-space using homogeneous transformations only is demonstrated on phantom experiments.

Conclusion: Homogeneous transformations allows for a conceptually simple, consistent and computationally efficient theoretical framework for motion correction applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523464PMC
http://dx.doi.org/10.1002/mrm.25552DOI Listing

Publication Analysis

Top Keywords

motion correction
16
framework motion
8
homogeneous transformations
8
motion
7
homogeneous
6
homogeneous coordinates
4
coordinates motion
4
correction
4
correction purpose
4
purpose prospective
4

Similar Publications

The motion of the trabecular meshwork (TM) facilitates the aqueous drainage from the anterior chamber to the venous system, thereby maintaining normal intraocular pressure. As such, characterizing the TM motion is valuable for assessing the functionality of the aqueous outflow system, as demonstrated by previous phase-sensitive optical coherence tomography (OCT) studies. Current methods typically acquire motion from a single cross-sectional plane along the circumference of the anterior chamber.

View Article and Find Full Text PDF

Purpose: To provide a fast quantitative imaging approach for a 0.55T scanner, where signal-to-noise ratio is limited by the field strength and k-space sampling speed is limited by a lower specification gradient system.

Methods: We adapted the three-dimensional spiral projection imaging MR fingerprinting approach to 0.

View Article and Find Full Text PDF

Purpose: To evaluate visibility of a sub-band posterior to the external limiting membrane (ELM) and assess its age-associated variation.

Methods: In a retrospective cross-sectional study, normal eyes were imaged using a high-resolution spectral-domain optical coherence tomography (SD-OCT) prototype (2.7-µm axial resolution).

View Article and Find Full Text PDF

A novel appliance for Class II dentoalveolar correction.

J Orthod

January 2025

Private Practice, Jerusalem, Israel.

In recent years, a segmental approach to Class II correction has gained popularity among orthodontists. This concept is best represented by the Carrière Motion 3D™ Class II Appliance (CMA), which is an efficient and effective appliance for the treatment of Class II malocclusions. Although it is original and innovative, it also has some inherent flaws that can potentially interfere with its daily use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!