Leucine-rich glioma inactivated 3 (LGI3) is a secreted protein member of LGI family. We previously reported that LGI3 increased in obese adipose tissues and suppressed adipogenesis through its receptor, ADAM23. We proposed that LGI3 may be a pro-inflammatory adipokine secreted predominantly by preadipocytes and macrophages. In this study, we showed that LGI3 and tumor necrosis factor-α (TNF-α) upregulated each other in 3T3-L1 cells. Treatment of 3T3-L1 preadipocytes with LGI3 protein increased TNF-α mRNA and protein. LGI3 treatment led to NF-κB activation and binding to an NF-κB binding site (-523 to -514) in TNF-α promoter. TNF-α treatment increased mRNA and protein expression of LGI3 and ADAM23. TNF-α increased NF-κB binding to a predicted binding site (-40 to -31) in LGI3 promoter. High fat diet-fed mice showed that LGI3 and TNF-α were increased and colocalized in adipose tissue inflammation. Taken together, these results suggested that mutual upregulation of LGI3 and TNF-α may play a role in adipose tissue inflammation in obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2014.12.023 | DOI Listing |
Microorganisms
June 2024
Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa.
Medicine (Baltimore)
February 2024
Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul, Republic of Korea.
Leucine rich repeat LGI family member 3 (LGI3) is a member of the LGI protein family. Previous studies of our group have reported that LGI3 is expressed in adipose tissue, skin and brain, and serves as a multifunctional cytokine. LGI3 may also be involved in cytokine networks in various cancers.
View Article and Find Full Text PDFCell Rep
January 2024
Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan. Electronic address:
Neurodevelopmental disorders, such as intellectual disability (ID), epilepsy, and autism, involve altered synaptic transmission and plasticity. Functional characterization of their associated genes is vital for understanding physio-pathological brain functions. LGI3 is a recently recognized ID-associated gene encoding a secretory protein related to an epilepsy-gene product, LGI1.
View Article and Find Full Text PDFJ Cell Biol
April 2023
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK.
Along myelinated axons, Shaker-type potassium channels (Kv1) accumulate at high density in the juxtaparanodal region, directly adjacent to the paranodal axon-glia junctions that flank the nodes of Ranvier. However, the mechanisms that control the clustering of Kv1 channels, as well as their function at this site, are still poorly understood. Here we demonstrate that axonal ADAM23 is essential for both the accumulation and stability of juxtaparanodal Kv1 complexes.
View Article and Find Full Text PDFBioinform Adv
November 2022
Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
Summary: Radiographic imaging techniques provide insight into the imaging features of tumor regions of interest, while immunohistochemistry and sequencing techniques performed on biopsy samples yield omics data. Relationships between tumor genotype and phenotype can be identified from these data through traditional correlation analyses and artificial intelligence (AI) models. However, the radiogenomics community lacks a unified software platform with which to conduct such analyses in a reproducible manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!