Synthesis and verification of biobased terephthalic acid from furfural.

Sci Rep

Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan.

Published: February 2015

Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316194PMC
http://dx.doi.org/10.1038/srep08249DOI Listing

Publication Analysis

Top Keywords

terephthalic acid
8
biobased carbon
8
biobased
5
synthesis verification
4
verification biobased
4
biobased terephthalic
4
acid furfural
4
furfural exploiting
4
exploiting biomass
4
biomass alternative
4

Similar Publications

With the growing threat of organic pollutants in water bodies, there is an urgent need for sustainable and efficient water decontamination methods. This research focused on synthesizing a novel Z-scheme ternary heterostructure composed of graphene oxide (GO)-mediated polyaniline (PANI) with α-FeO and investigated its potential in brilliant green (BrG) and ciprofloxacin (CIP) degradation tests under visible light. The ternary composite demonstrated exceptional photocatalytic activity, with the optimized 10%PANI/GO/α-FeO (10PGF) photocatalyst achieving 99.

View Article and Find Full Text PDF

End-of-life plastics and carbon dioxide (CO2) are anthropogenic waste carbon resources; it is imperative to develop efficient technologies to convert them to value-added products. Here we report the upcycling of polyethylene terephthalate (PET) plastic and CO2 toward valuable potassium diformate, terephthalic acid, and H2 fuel via decoupled electrolysis. This product-oriented process is realized by two electrolyzers: (1) a solid-state-electrolyte based CO2 electrolyzer and (2) a solid-polymer-electrolyte-based PET electrolyzer.

View Article and Find Full Text PDF

Catalytic upcycling of polyethylene terephthalate (PET) into high-value oxygenated products is a fascinating process, yet it remains challenging. Here, we present a one-step tandem strategy to realize the thermal catalytic oxidation upcycling of PET to terephthalic acid (TPA) and high-value glycolic acid (GA) instead of ethylene glycol (EG). By using the Au/NiO with rich oxygen vacancies as catalyst, we successfully accelerate the hydrolysis of PET, accompanied by obtaining 99% TPA yield and 87.

View Article and Find Full Text PDF

To realize the aim of easy and accurate detection of ammonia and picric acid (PA) in both aqueous and vapor phases based on function-oriented investigation principles, in the present study, we include a luminescent performance with recognition performance, taking into account the application conditions. Zn(II) ions with luminescence qualities and an amine-substituted imidazole moiety with selective recognition properties towards picric acid and ammonia are coupled to generate a novel 1D luminous Zn(II) coordination polymer, Zn-CP [{Zn(II)( 2-ABZ)2(2-BDC)}].MeOH]∞, where 2-ABZ and 2-BDC stand for terephthalic acid and protonated 2 aminobenzimidazole, respectively.

View Article and Find Full Text PDF

Millions of tons of polyethylene terephthalate (PET) are produced each year, however only ~30% of PET is currently recycled in the United States. Improvement of PET recycling and upcycling practices is an area of ongoing research. One method for PET upcycling is chemical depolymerization (through hydrolysis or aminolysis) into aromatic monomers and subsequent biodegradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!