Systematic cell-based phenotyping of missense alleles empowers rare variant association studies: a case for LDLR and myocardial infarction.

PLoS Genet

Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), University of Heidelberg/ EMBL, Heidelberg, Germany; Center of Human Genetic Research (CHGR), Massachusetts General Hospital, Boston, Massachusetts, United States of America; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America.

Published: February 2015

A fundamental challenge to contemporary genetics is to distinguish rare missense alleles that disrupt protein functions from the majority of alleles neutral on protein activities. High-throughput experimental tools to securely discriminate between disruptive and non-disruptive missense alleles are currently missing. Here we establish a scalable cell-based strategy to profile the biological effects and likely disease relevance of rare missense variants in vitro. We apply this strategy to systematically characterize missense alleles in the low-density lipoprotein receptor (LDLR) gene identified through exome sequencing of 3,235 individuals and exome-chip profiling of 39,186 individuals. Our strategy reliably identifies disruptive missense alleles, and disruptive-allele carriers have higher plasma LDL-cholesterol (LDL-C). Importantly, considering experimental data refined the risk of rare LDLR allele carriers from 4.5- to 25.3-fold for high LDL-C, and from 2.1- to 20-fold for early-onset myocardial infarction. Our study generates proof-of-concept that systematic functional variant profiling may empower rare variant-association studies by orders of magnitude.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409815PMC
http://dx.doi.org/10.1371/journal.pgen.1004855DOI Listing

Publication Analysis

Top Keywords

missense alleles
20
myocardial infarction
8
rare missense
8
missense
6
alleles
6
rare
5
systematic cell-based
4
cell-based phenotyping
4
phenotyping missense
4
alleles empowers
4

Similar Publications

Deregulated ion channels contribute to RHOBTB2-associated developmental and epileptic encephalopathy.

Hum Mol Genet

January 2025

Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland.

While de novo missense variants in the BTB domains of atypical RhoGTPase RHOBTB2 cause a severe developmental and epileptic encephalopathy, de novo missense variants in the GTPase domain or bi-allelic truncating variants are associated with more variable neurodevelopmental and seizure phenotypes. Apart from the observation of RHOBTB2 abundance resulting from BTB-domain variants and increased seizure susceptibility in Drosophila overexpressing RhoBTB, our knowledge on RHOBTB2-related pathomechanisms is limited. We now found enrichment for ion channels among the differentially expressed genes from RNA-Seq on fly heads overexpressing RhoBTB.

View Article and Find Full Text PDF

Analysis of pathogenic variants in retinoblastoma reveals a potential gain of function mutation.

Genes Cancer

January 2025

Laboratorio de Interacciones Biomoleculares y Cáncer, Instituto de Física Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, México.

is a gene that codes for a tumour suppressor protein involved in various types of cancer. It was first described in retinoblastoma and is segregated as an autosomal dominant trait with high penetrance. In 1971, Knudson proposed his hypothesis of the two hits, where two mutational events are required to initiate tumour progression.

View Article and Find Full Text PDF

RYR3 Variants Are Potentially Associated With Idiopathic (Non-Lesional) Partial Epilepsy/Susceptibility of Seizures, Toward Understanding the Gene-Disease Association by Genetic Dependent Nature.

Am J Med Genet B Neuropsychiatr Genet

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

The RYR3 gene encodes a brain-type ryanodine receptor that functions to release calcium from intracellular storage and plays an essential role in calcium signaling. The associations between RYR3 variants and brain disorders remain unknown. We performed whole-exome sequencing in patients with idiopathic (non-lesional) partial epilepsy of unknown etiology.

View Article and Find Full Text PDF

Venous thromboembolism (VTE) involves blood clot formation in veins, resulting in serious health issues. Fibrinogen, a crucial clotting protein, consists of three polypeptides encoded by the fibrinogen genes: alpha (FGA), beta (FGB) and gamma (FGG). We genotyped most common missense variants in the fibrinogen genes in relation to VTE, recurrence and family history in Malmö Thrombophilia Study, including 1465 VTE patients followed for ~10 years and 429 healthy donors.

View Article and Find Full Text PDF

Split-hand/foot malformation syndrome (SHFM) is a congenital limb malformation that is both clinically and genetically heterogeneous. Variants in WNT10B are known to cause an autosomal recessive form of SHFM. Here, we report a patient born to unrelated parents who was found to be a compound heterozygote for missense variants in WNT10B: c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!