A number of natural proteins are known to have affinity and specificity for immunoglobulins. Some of them are widely used as reagents for detection or capture applications, such as Protein G and Protein A. However, these natural proteins have a defined spectrum of recognition that may not fit specific needs. With the development of combinatorial protein engineering and selection techniques, it has become possible to design artificial affinity proteins with the desired properties. These proteins, termed alternative scaffold proteins, are most often chosen for their stability, ease of engineering and cost-efficient recombinant production in bacteria. In this review, we focus on alternative scaffold proteins for which immunoglobulin binders have been identified and characterized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384111 | PMC |
http://dx.doi.org/10.3390/biom5010060 | DOI Listing |
JACS Au
December 2024
Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
Maintaining stringent conditions in SELEX (Systematic Evolution of Ligands by EXponential enrichment) is crucial for obtaining high-affinity aptamers. However, excessive stringency greatly increases the risk of SELEX failure. Controlling stringency has remained a technical challenge, largely dependent on intuition, due to the absence of a clear, quantitative measure of stringency.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.
In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.
View Article and Find Full Text PDFMetabolites
December 2024
Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.
Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Mutations commonly occur in cancer cells, arising neoantigen as potential targets for personalized immunotherapy of lung adenocarcinoma (LUAD). However, the substantial heterogeneity observed among individuals and distinct foci within the same patient presents significant challenges in formulating immunotherapy strategies. The aim of the work is to characterize the mutation pattern and identify neopeptides across different patients and diverse foci within the same patients with LUAD.
View Article and Find Full Text PDFAnxiety disorders are one of the most common mental health pathologies in the world. They require searc h and development of novel effective pharmacologically active substances. Thus, the development of new approaches to the search for anxiolytic substances by artificial intelligence methods is an important area of modern bioinformatics and pharmacology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!