A combination of a Keggin-type polyoxometalate (POM), [CuPW11O39](5-), with a Cu3(BTC)2 metal-organic framework (MOF-199/HKUST-1; where BTC is benzene-1,3,5-tricarboxylate), was successfully self-assembled on a cellulose substrate (cotton) with a room-temperature process. Cotton fibers were functionalized by partial etherification. Cu3(BTC)2 metal-organic framework and polyoxometalate encapsulated in Cu3(BTC)2 metal-organic framework were self-assembled on the carboxymethylate ion sites initiated with copper nitrate using ethanol and water as solvents. Octahedral crystals were observed on both MOF-cotton and POM-MOF-cotton; both contained copper while the POM-MOF-cotton also contained tungsten. Occupancy of POM in MOF cages was calculated to be about 13%. Moisture content remained at 3 to 4 wt % similar to that of untreated cotton. Reactivity to both hydrogen sulfide and methyl parathion was higher for POM-MOF-cotton due to the Keggin polyoxometalate and the extra-framework cations Cu(2+) ions compensating the charges of the encapsulated Keggins. The POM-MOF material was found to effectively remove 0.089 mg of methyl parathion per mg of MOF from a hexane solution while MOF-cotton removed only 0.054 mg of methyl parathion per mg of MOF.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am506510qDOI Listing

Publication Analysis

Top Keywords

cu3btc2 metal-organic
16
metal-organic framework
16
methyl parathion
12
partial etherification
8
polyoxometalate encapsulated
8
encapsulated cu3btc2
8
pom-mof-cotton contained
8
parathion mof
8
functionalization cotton
4
cotton fiber
4

Similar Publications

Engineering a Cu-Pd Paddle-Wheel Metal-Organic Framework for Selective CO Electroreduction.

Angew Chem Int Ed Engl

December 2024

Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, D-85748, Garching, Germany.

Article Synopsis
  • Optimizing the binding energy at active sites is essential for improving the selectivity and activity of catalysts in the electrochemical reduction of CO2. !* -
  • Copper is effective in reducing CO to hydrocarbons but struggles with product selectivity due to moderate binding energies of intermediates; a new Cu-Pd dimer structure is proposed using a metal-organic framework (MOF) to address this issue. !* -
  • The incorporation of palladium into the Cu-Pd structure enhances the adsorption of the COOH* intermediate, leading to more selective generation of carbon monoxide and deepening the understanding of catalyst structure-activity relationships. !*
View Article and Find Full Text PDF

Exploring the high-performance photoelectronic properties of perovskite quantum dots (QDs) is desirable for paper-based photoelectrochemical (PEC) sensing;however, challenges remain in improving their stability and fundamental performance. Herein, a novel Z-scheme heterostructure with host-guest interaction by the confinement of CHNHPbBr QDs within Cu(BTC) metal-organic framework (MOF) crystal (MAPbBr@Cu(BTC)) is successfully constructed on the paper-based PEC device for ultrasensitive detection of Ochratoxin A (OTA), with the assistance of the exciton-plasmon interaction (EPI) effect. The host-guest interaction is estabilished by encapsulating MAPbBr QDs as guests within Cu(BTC) MOF as a host, which prevents MAPbBr QDs from being damaged in the polar system, offering access to long-term stability with high-performance PEC properties.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are limited by small pores and buried active sites, and their enzyme-like catalytic activity is still very low. Herein, laccase was employed as the organic component to construct laccase@Cu(BTC) nanofractal microspheres. During the preparation process, laccase adsorbed Cu by electrostatic attractive interaction, then combined with Cu by coordination interaction, and finally induced the in situ growth of HBTC in multiple directions by electrostatic repulsion.

View Article and Find Full Text PDF

The radical difunctionalization of alkenes plays a vital role in pharmacy, but the conventional homogeneous catalytic systems are challenging in selectivity and sustainability to afford the target molecules. Herein, the famous readily available metal-organic framework (MOF), Cu(), has been applied to cyano-trifluoromethylation of alkenes as a high-performance and recyclable heterogeneous catalyst, which possesses copper(II) active sites residing in funnel-like cavities. Under mild conditions, styrene derivatives and various unactivated olefins could be smoothly transformed into the corresponding cyano-trifluoromethylation products.

View Article and Find Full Text PDF

Improving interfacial thermal transport is crucial for heat dissipation in devices with interfaces, such as electronics, buildings, and solar panels. Here, we design a strategy by utilizing the water adsorption-desorption process in porous metal-organic frameworks (MOFs) to tune the interfacial heat transfer, which could benefit their potential in cooling or heat dissipation applications. We observe a changeable thermal conductance across the solid/porous MOF interfaces owing to the dense water channel formed by the adsorbed water molecules in MOFs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!