This study examined the clinical utility of the Wechsler Adult Intelligence Scales-Fourth Edition (WAIS-IV) in individuals with complicated mild, moderate or severe TBI. One hundred individuals with TBI (n = 35 complicated mild or moderate TBI; n = 65 severe TBI) and 100 control participants matched on key demographic variables from the WAIS-IV normative dataset completed the WAIS-IV. Univariate analyses indicated that participants with severe TBI had poorer performance than matched controls on all index scores and subtests (except Matrix Reasoning). Individuals with complicated mild/moderate TBI performed more poorly than controls on the Working Memory Index (WMI), Processing Speed Index (PSI), and Full Scale IQ (FSIQ), and on four subtests: the two processing speed subtests (SS, CD), two working memory subtests (AR, LN), and a perceptual reasoning subtest (BD). Participants with severe TBI had significantly lower scores than the complicated mild/moderate TBI on PSI, and on three subtests: the two processing speed subtests (SS and CD), and the new visual puzzles test. Effect sizes for index and subtest scores were generally small-to-moderate for the group with complicated mild/moderate and moderate-to-large for the group with severe TBI. PSI also showed good sensitivity and specificity for classifying individuals with severe TBI versus controls. Findings provide support for the clinical utility of the WAIS-IV in individuals with complicated mild, moderate, and severe TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/13854046.2015.1005677 | DOI Listing |
Brain Impair
January 2025
Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Vic, Australia.
Background Many people with traumatic brain injury (TBI) report problems with social functioning that can have immediate and enduring impacts. We aimed to explore perceptions of social functioning after TBI and understand attitudes towards medication that could improve long-term social outcomes. Method A qualitative descriptive approach using interview methods was conducted in Victoria, Australia.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.
Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.
View Article and Find Full Text PDFJ Head Trauma Rehabil
January 2025
Author Affiliations: Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia (Prof Ponsford and Drs Spitz, Pyman, Carrier, Hicks, and Nguyen); Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (Dr Spitz); TIRR Memorial Hermann Research Center Houston, Texas (Drs Sander and Sherer); and H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine & Harris Health System, Houston, Texas (Drs Sander and Sherer).
Objectives: This study aimed to identify outcome clusters among individuals with traumatic brain injury (TBI), 6 months to 10 years post-injury, in an Australian rehabilitation sample, and determine whether scores on 12 dimensions, combined with demographic and injury severity variables, could predict outcome cluster membership 1 to 3 years post-injury.
Setting: Rehabilitation hospital.
Participants: A total of 467 individuals with TBI, aged 17 to 87 (M = 44.
<b>Background and Objective:</b> It is well documented that Whole Genome Sequencing (WGS) has recently used to explore new resistance patterns and track the dissemination of extensive and pan drug-resistant microbes in healthcare settings. This article explores the link between traumatic infections caused by road traffic accidents (RTAs) leading to coma and the development of chest infections caused by extensively drug-resistant (XDR) <i>Klebsiella pneumoniae</i> and <i>Pseudomonas aeruginosa</i>. <b>Materials and Methods:</b> The study was carried out from March to December 2022 which included a 45-year-old male patient admitted to the ICU of Al Ramadi Teaching Hospitals following a severe RTA that resulted in a TBI and subsequent coma.
View Article and Find Full Text PDFMethodsX
June 2025
Neurorehabilitation and Neuromodulation Laboratory, Department of Physiological Sciences, Federal University of Espírito Santo, City of Vitória, ES, Brazil.
Traumatic brain injury (TBI) is a global public health condition that causes cognitive and behavioral deficits. This protocol assesses the potential of quantitative electroencephalogram (EEG) biomarkers, associated with inflammatory indicators, to predict mortality and functional recovery in patients with severe TBI. Through continuous monitoring and analysis of abnormal brain activity patterns, the protocol aims to personalize therapeutic interventions and improve patient quality of life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!