A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aligned bioinspired cellulose nanocrystal-based nanocomposites with synergetic mechanical properties and improved hygromechanical performance. | LitMetric

Natural high-performance materials inspire the pursuit of ordered hard/soft nanocomposite structures at high fractions of reinforcements and with balanced supramolecular interactions. Such biomimetic design principles remain difficult to realize for bulk nanocomposites. Herein, we establish an effective drawing procedure that induces a high orientation of crystalline cellulose nanocrystals (CNCs) in a matrix of carboxymethylcellulose (CMC) at high level of reinforcements (50 vol %). We show such alignment in rather thick bulk films and report synergetic improvement with a simultaneous increase of stiffness, strength, and work-to-fracture as a function of the degree of alignment. Scanning electron microscopy and two-dimensional X-ray diffraction quantify the alignment of the cylindrical nanoparticles and link it to the extent of drawing and improvements in mechanical properties. We further show that the decline in mechanical properties of such waterborne all biobased nanocomposites at high relative humidity can be balanced using supramolecular modulation of the ionic interactions by exchanging the monovalent Na(+) counterion, present in CMC and CNC with di- or trivalent Cu(2+) and Fe(3+). This contribution demonstrates the importance of aligning one-dimensional reinforcements to achieve synergetic improvement in mechanical properties in sustainable bioinspired nanocomposites and suggests pathways to prepare water-stable materials based on a waterborne processing route.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am507726tDOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
balanced supramolecular
8
synergetic improvement
8
aligned bioinspired
4
bioinspired cellulose
4
cellulose nanocrystal-based
4
nanocomposites
4
nanocrystal-based nanocomposites
4
nanocomposites synergetic
4
mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!