Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries.

J Am Chem Soc

Environmental Energy Technologies Division and ‡Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.

Published: February 2015

Here we describe a class of electric-conducting polymers that conduct electrons via the side chain π-π stacking. These polymers can be designed and synthesized with different chemical moieties to perform different functions, extremely suitable as a conductive polymer binder for lithium battery electrodes. A class of methacrylate polymers based on a polycyclic aromatic hydrocarbon side moiety, pyrene, was synthesized and applied as an electrode binder to fabricate a silicon (Si) electrode. The electron mobilities for PPy and PPyE are characterized as 1.9 × 10(-4) and 8.5 × 10(-4) cm(2) V(-1) s(-1), respectively. These electric conductive polymeric binders can maintain the electrode mechanical integrity and Si interface stability over a thousand cycles of charge and discharge. The as-assembled batteries exhibit a high capacity and excellent rate performance due to the self-assembled solid-state nanostructures of the conductive polymer binders. These pyrene-based methacrylate binders also enhance the stability of the solid electrolyte interphase (SEI) of a Si electrode over long-term cycling. The physical properties of this polymer are further tailored by incorporating ethylene oxide moieties at the side chains to enhance the adhesion and adjust swelling to improve the stability of the high loading Si electrode.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja511181pDOI Listing

Publication Analysis

Top Keywords

polymeric binders
8
conductive polymer
8
electrode
5
side-chain conducting
4
conducting phase-separated
4
phase-separated polymeric
4
binders
4
binders high-performance
4
high-performance silicon
4
silicon anodes
4

Similar Publications

Inhalation exposure to respirable crystalline silica (RCS) during the fabrication of engineered stone-based kitchen countertops has been on the rise in recent years and has become a significant occupational health problem in the United States and globally. Little is known about the presence of nanocrystalline silica (NCS), i.e.

View Article and Find Full Text PDF

Iron-oxide (FeO) nanoneedles were first in situ grown on the surface of carbon nanofibers (CNFs) using hydrothermal and N annealing process, and then polyaniline (PANI) was coated on the FeO nanoneedles to form network-like nanorods through dilute solution polymerization. The PANI/FeO/CNFs binder-free electrode exhibited a high specific capacitance of 603 F/g at 1 A/g with good rate capability. (The capacitance loss was about 48.

View Article and Find Full Text PDF

Herein, we propose magnetic nanocomposites as a powerful new catalyst for organic pollutant reduction. Polypyrrole (PPy) was synthesized in situ within the semi-interpenetrating alginate (Alg)/gelatin (Ge) network in presence of α-FeO as encapsulating matrix and inorganic filler, respectively. The polymeric matrix can act as bifunctional agent such as a binder and stabilizer to improve nanocatalyst stability while preserving their catalytic/magnetic performances.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how incorporating cotton and polyester fibers into polypropylene (PP) composites can improve their mechanical, thermal, and rheological properties, aiming for durable materials.
  • The research finds that a balanced mix of cotton and polyester fibers maximizes tensile strength and stiffness, with different coupling agents influencing fiber-matrix adhesion and overall performance.
  • The use of recycled textile fibers not only bolsters thermal resistance and structural stability but also presents a sustainable solution that supports the circular economy by repurposing textile waste in composite manufacturing.
View Article and Find Full Text PDF

Gilded wall paintings such as those in Petra-Jordan undergo deterioration processes such as delamination and loss of the gold layer. The aim of this work is to produce a functioning long-lasting adhesive that compensates for binder and gold loss while stabilising the gold layer. Polymer-stabilised gold nanoparticles (AuNPs) as a conservation material for gilded heritage paintings (Nano Gold Gel (NGG)) were synthesised using two facile and affordable synthesis approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!