Cancer cells reorganize their metabolic pathways to fuel demanding rates of proliferation. Oftentimes, these metabolic phenotypes lie downstream of prominent oncogenes. The lipid signaling molecule phosphatidic acid (PtdOH), which is produced by the hydrolytic enzyme phospholipase D (PLD), has been identified as a critical regulatory molecule for oncogenic signaling in many cancers. In an effort to identify novel regulatory mechanisms for PtdOH, we screened various cancer cell lines, assessing whether treatment of cancer models with PLD inhibitors altered production of intracellular metabolites. Preliminary findings lead us to focus on how deoxyribonucleoside triphosphates (dNTPs) are altered upon PLD inhibitor treatment in gliomas. Using a combination of proteomics and small molecule intracellular metabolomics, we show herein that PtdOH acutely regulates the production of these pyrimidine metabolites through activation of CAD via mTOR signaling pathways independently of Akt. These changes are responsible for decreases in dNTP production after PLD inhibitor treatment. Our data identify a novel regulatory role for PLD activity in specific cancer types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433586 | PMC |
http://dx.doi.org/10.1021/cb500772c | DOI Listing |
Adv Mater
January 2025
School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China.
Magnetic antiskyrmions, the anti-quasiparticles of magnetic skyrmions, possess alternating Bloch- and Néel-type spin spirals, rendering them promising for advanced spintronics-based information storage. To date, antiskyrmions are demonstrated in a few bulk materials featuring anisotropic Dzyaloshinskii-Moriya interactions and a limited number of artificial multilayers. Identifying novel film materials capable of hosting isolated antiskyrmions is critical for memory applications in topological spintronics.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
In this work, coixalkyne A (), a natural polynuclear calcium complex with a novel cross-shaped molecular architecture, was isolated from L. along with the undescribed analogue coixalkyne B (). Their structures were identified by means of NMR spectroscopy, ECD calculations, and single-crystal X-ray diffraction.
View Article and Find Full Text PDFHum Gene Ther
January 2025
Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
Cystic fibrosis (CF) is caused by mutations in the (). While gene therapy holds promise as a cure, the cell-type-specific heterogeneity of expression in the lung presents significant challenges. Current CF ferret models closely replicate the human disease phenotype but have limitations in studying functional complementation through cell-type-specific CFTR restoration.
View Article and Find Full Text PDFMol Med Rep
March 2025
Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China.
Colorectal cancer (CRC) is one of the most common cancers worldwide. With the growing understanding of immune regulation in tumors, the complement system has been recognized as a key regulator of tumor immunity. Traditionally, the complement cascade, considered an evolutionarily conserved defense mechanism against invading pathogens, has been viewed as a crucial inhibitor of tumor progression.
View Article and Find Full Text PDFAnim Genet
February 2025
Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Gongzhuling, China.
The origin of domestic sheep (Ovis aries) can be traced back to the Asian mouflon (Ovis gmelini), in the Near East around 10 000 years ago. Genetic divergence within mouflon populations can occur due to factors such as geographical isolation, social structures, and environmental pressures, leading to different affinities with domestic sheep. However, few studies have reported the extent to which mouflon sheep contribute to domestic sheep in different regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!