Aims: Diabetes is associated with both dysfunction of the lower urinary tract (LUT) and overactivity of the renin-angiotensin system (RAS). Although it is well known that the RAS affects normal LUT function, very little is known about RAS effects on the diabetic LUT. Accordingly, we investigated the effects of chronic angiotensin II (AngII) treatment on the LUT in a model of type 1 diabetes.
Methods: Ins2(Akita) diabetic mice (20 weeks old) and their age-matched background controls underwent conscious cystometric evaluation after 4 weeks of chronic AngII treatment (700 ng/kg/min by osmotic pump) or vehicle (saline).
Results: Diabetic mice had compensated LUT function with bladder hypertrophy. Specifically, micturition volume, residual volume, and bladder capacity were all increased, while voiding efficiency and pressure generation were unchanged as bladder mass, contraction duration, and phasic urethral function were increased. AngII significantly increased voiding efficiency and peak voiding pressure and decreased phasic frequency irrespective of diabetic state and, in diabetic but not normoglycemic control mice, significantly decreased residual volume and increased contraction duration and nonphasic contraction duration.
Conclusions: The Ins2(Akita) diabetic mice had compensated LUT function at 20 weeks of age. Even under these conditions, AngII had beneficial effects on LUT function, resulting in increased voiding efficiency. Future studies should therefore be conducted to determine whether AngII can rescue the decompensated LUT function occurring in end-stage diabetic uropathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559278 | PMC |
http://dx.doi.org/10.1002/nau.22511 | DOI Listing |
Neural Netw
January 2025
School of Engineering Sciences, Lappeenranta-Lahti University of Technology LUT, Lahti, 15110, Finland; Atmospheric Modelling Centre Lahti, Lahti University Campus, Lahti, 15140, Finland; Institute for Atmospheric and Earth System Research (INAR), The University of Helsinki, Helsinki, 00014, Finland.
Brain Res
December 2024
Department of Nuclear Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China. Electronic address:
The brain is a highly complex and delicate system, and its internal neural processes are manifested as the interweaving and superposition of multi-frequency neural signals. However, traditional brain network studies are often limited to the whole frequency band or a specific frequency band, ignoring the potentially profound impact of the diversity of information within the frequency on the dynamics of brain networks. To comprehensively and deeply analyze this phenomenon, the present study is devoted to exploring the specific performance of brain networks at different frequencies.
View Article and Find Full Text PDFJ Mol Model
December 2024
School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
Context: This study employs molecular dynamics simulations to investigate the nanoscale tribological behavior of a single transverse grain boundary in a nickel-based polycrystalline alloy. A series of simulations were conducted using a repetitive rotational friction method to explore the mechanisms by which different grain boundary positions influence variations in wear depth, friction force, friction coefficient, dislocation, stress, and internal damage during repeated friction processes. The results reveal that the grain boundary structure enhances the strength of the nanoscale nickel-based polycrystalline alloy.
View Article and Find Full Text PDFPhytomedicine
November 2024
Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060. Electronic address:
Background: The global incidence of calcium oxalate (CaOx) kidney stones is rising, and effective treatments remain limited. Luteolin (Lut), a naturally flavonoid present in several plants, is recognized for its anti-inflammatory, anti-injury, and neuroprotective effects. However, its effects on CaOx kidney stone formation and the associated kidney damage are still unknown.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
Luteolin (Lut) is a natural flavonoid that has been widely used in the treatment of liver and glycolipid metabolic diseases. However, poor water solubility and bioavailability limit its efficacy and application. To overcome these challenges, a protein-polysaccharide composite nanoparticle (L-GF NPs) for Lut delivery was prepared by a self-assembly method based on amphiphilic gelatin and active finger citron polysaccharide (FCP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!