Background And Objectives: Simulation-based medical education has become popular in postgraduate training for medical emergencies; however, the direct impact on learners' clinical performances during live critical events is unknown. Our goal was to evaluate the perceived impact of simulation-based education on pediatric emergencies by auditing pediatric residents immediately after involvement in actual emergency clinical events.

Methods: Weekly team-based pediatric simulation training for inpatient emergencies was implemented in an academic tertiary care hospital. Immediately after actual pediatric emergency events, each resident involved was audited regarding roles, performed tasks, and perceived effectiveness of earlier simulation-based education. The audit was performed by using a Likert scale.

Results: From September 2010 through August 2011, a total of 49 simulation sessions were held. During the same period, 27 pediatric emergency events occurred: 3 code events, 14 rapid response team activations, and 10 emergency transfers to the PICU. Forty-seven survey responses from 20 pediatric residents were obtained after the emergency clinical events. Fifty-three percent of residents felt well prepared, and 45% reported having experienced a similar simulation before the clinical event. A preceding similar simulation experience was perceived as helpful in improving clinical performance. Residents' confidence levels, however, did not differ significantly between those who reported having had a preceding similar simulation and those who had not (median of 4 vs median of 3; P=.16, Wilcoxon rank-sum test).

Conclusions: A novel electronic survey was successfully piloted to measure residents' perceptions of simulation education compared with live critical events. Residents perceived that their experiences in earlier similar simulations positively affected their performances during emergencies.

Download full-text PDF

Source
http://dx.doi.org/10.1542/hpeds.2014-0091DOI Listing

Publication Analysis

Top Keywords

live critical
12
critical events
12
simulation education
8
simulation-based education
8
pediatric residents
8
emergency clinical
8
pediatric emergency
8
emergency events
8
preceding simulation
8
events
7

Similar Publications

Background: Efficient emergency patient transport systems, which are crucial for delivering timely medical care to individuals in critical situations, face certain challenges. To address this, CONNECT-AI (CONnected Network for EMS Comprehensive Technical-Support using Artificial Intelligence), a novel digital platform, was introduced. This artificial intelligence (AI)-based network provides comprehensive technical support for the real-time sharing of medical information at the prehospital stage.

View Article and Find Full Text PDF

RNA modifications, such as N6-methylation of adenosine (m6A), serve as key regulators of cellular behaviors, and are highly dynamic; however, tools for dynamic monitoring of RNA modifications in live cells are lacking. Here, we develop a genetically encoded live-cell RNA methylation sensor that can dynamically monitor RNA m6A level at single-cell resolution. The sensor senses RNA m6A in cells via affinity-induced cytoplasmic retention using a nuclear location sequence-fused m6A reader.

View Article and Find Full Text PDF

Sialyltransferases (ST) are key enzymes found in, among others, mammals and bacteria that are responsible for producing sialylated glycans, which play critical roles in human health and disease. However, chemical tools to study sialyltransferases have been limited to non-covalent inhibitors and probes that do not allow isolation and profiling of these important enzymes. Here we report a new class of covalent affinity-based probes (AfBP) for ST by using ligand-directed chemistry (LDchem).

View Article and Find Full Text PDF

Single-particle tracking reveals heterogeneous PIEZO1 diffusion.

Biophys J

January 2025

Department of Physiology & Biophysics, UC Irvine, Irvine, California; Department of Biomedical Engineering, UC Irvine, Irvine, California; Center for Complex Biological Systems, UC Irvine, Irvine, California; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, California. Electronic address:

The mechanically-activated ion channel PIEZO1 is critical to numerous physiological processes, and is activated by diverse mechanical cues. The channel is gated by membrane tension and has been found to be mobile in the plasma membrane. We employed single particle tracking (SPT) of endogenous, tdTomato-tagged PIEZO1 using Total Internal Reflection Fluorescence Microscopy in live cells.

View Article and Find Full Text PDF

Aim: This study aimed to identify the genes associated with the development of lung adenocarcinoma (LUAD) and potential therapeutic targets.

Methods: Differentially expressed genes (DEGs) were identified by self-transcriptome sequencing of tumor tissues and paracancerous tissues resected during surgery and combined with The Cancer Genome Atlas (TCGA) data to screen for the genes associated with LUAD prognosis. The expression was validated at mRNA and protein levels, and the gene knockdown was used to examine the impact and underlying mechanisms on lung cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!