A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Label-free Raman imaging of the macrophage response to the malaria pigment hemozoin. | LitMetric

Label-free Raman imaging of the macrophage response to the malaria pigment hemozoin.

Analyst

Biophotonics Laboratory, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

Published: April 2015

Hemozoin, the 'malaria pigment', is engulfed by phagocytic cells, such as macrophages, during malaria infection. This biocrystalline substance is difficult to degrade and often accumulates in phagocytes. The macrophage response to hemozoin relates to the severity of the disease and the potential for malaria-related disease complications. In this study we have used Raman spectroscopy as a label-free method to investigate the biochemical changes occurring in macrophages during the first few hours of hemozoin uptake. We found a number of distinct spectral groups, spectrally or spatially related to the presence of the hemozoin inside the cell. Intracellular hemozoin was spectrally identical to extracellular hemozoin, regardless of the location in the cell. A small proportion of hemozoin was found to be associated with lipid-based components, consistent with the uptake of hemozoin into vesicles such as phagosomes and lysosomes. The spatial distribution of the hemozoin was observed to be inhomogeneous, and its presence largely excluded that of proteins and lipids, demonstrating that cells were not able to break down the biocrystals on the time scales studied here. These results show that Raman imaging can be used to answer some of the open questions regarding the role of hemozoin in the immune response. How different combinations of hemozoin and other molecules are treated by macrophages, whether hemozoin can be broken down by the cell, and more importantly, which co-factors or products are involved in the subsequent cell reaction are the expected issues to be elucidated by this technique.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an01850hDOI Listing

Publication Analysis

Top Keywords

hemozoin
13
raman imaging
8
macrophage response
8
label-free raman
4
imaging macrophage
4
response malaria
4
malaria pigment
4
pigment hemozoin
4
hemozoin hemozoin
4
hemozoin 'malaria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!