Background: Tenascin-C (TNC), an extracellular matrix protein overexpressed in malignant gliomas, stimulates invasion of conventional glioma cell lines (U251, U87). However, there is a dearth of such information on glioma stemlike cells. Here, we have addressed whether and how TNC may regulate the invasiveness of brain tumor-initiating cells (BTICs) that give rise to glioma progenies.
Methods: Transwell inserts coated with extracellular matrix proteins were used to determine the role of TNC in BTIC invasion. Microarray analysis, lentiviral constructs, RNA interference-mediated knockdown, and activity assay ascertained the role of proteases in TNC-stimulated BTIC invasion in culture. Involvement of proteases was validated using orthotopic brain xenografts in mice.
Results: TNC stimulated BTIC invasiveness in a metalloproteinase-dependent manner. A global gene expression screen identified the metalloproteinase ADAM-9 as a potential regulator of TNC-stimulated BTIC invasiveness, and this was corroborated by an increase of ADAM-9 protein in 4 glioma patient-derived BTIC lines. Notably, RNA interference to ADAM-9, as well as inhibition of mitogen-activated protein kinase 8 (c-Jun NH2-terminal kinase), attenuated TNC-stimulated ADAM-9 expression, proteolytic activity, and BTIC invasiveness. The relevance of ADAM-9 to tumor invasiveness was validated using resected human glioblastoma specimens and orthotopic xenografts where elevation of ADAM-9 and TNC expression was prominent at the invasive front of the tumor.
Conclusions: This study has identified TNC as a promoter of the invasiveness of BTICs through a mechanism involving ADAM-9 proteolysis via the c-Jun NH2-terminal kinase pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490870 | PMC |
http://dx.doi.org/10.1093/neuonc/nou362 | DOI Listing |
Brain Pathol
September 2021
Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
Glioblastomas (GBMs) are highly aggressive, recurrent, and lethal brain tumors that are maintained via brain tumor-initiating cells (BTICs). The aggressiveness of BTICs may be dependent on the extracellular matrix (ECM) molecules that are highly enriched within the GBM microenvironment. Here, we investigated the expression of ECM molecules in GBM patients by mining the transcriptomic databases and also staining human GBM specimens.
View Article and Find Full Text PDFJ Cell Biol
February 2021
Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
Glioblastoma is the most common and deadly malignant brain cancer. We now demonstrate that loss of function of the endosomal GTPase Rab35 in human brain tumor initiating cells (BTICs) increases glioblastoma growth and decreases animal survival following BTIC implantation in mouse brains. Mechanistically, we identify that the GTPase Arf5 interacts with the guanine nucleotide exchange factor (GEF) for Rab35, DENND1/connecdenn, and allosterically enhances its GEF activity toward Rab35.
View Article and Find Full Text PDFNeuro Oncol
April 2021
PECEM, UNAM, Mexico City, Mexico.
Background: Glioblastomas (GBMs) are the main primary brain tumors in adults with almost 100% recurrence rate. Patients with lateral ventricle proximal GBMs (LV-GBMs) exhibit worse survival compared to distal locations for unknown reasons. One hypothesis is the proximity of these tumors to the cerebrospinal fluid (CSF) and its chemical cues that can regulate cellular phenotype.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2020
Breast tumor initiating cells (BTICs) with ALDHCD24CD44 phenotype are the most tumorigenic and invasive cell population in breast cancer. However, the molecular mechanisms are still unclear. Here, it is found that a negative immune regulator interleukin-1 receptor type 2 (IL1R2) is upregulated in breast cancer (BC) tissues and especially in BTICs.
View Article and Find Full Text PDFPLoS One
January 2018
Hotchkiss Brain Institute and Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.
Purpose: The prognosis for patients diagnosed with glioblastoma multiforme (GBM) remains dismal, with current treatment prolonging survival only modestly. As such, there remains a strong need for novel therapeutic strategies. The janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 pathway regulates many cellular processes in GBM, including survival, proliferation, invasion, anti-apoptosis, and immune evasion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!