Antipseudomonal agents exhibit differential pharmacodynamic interactions with human polymorphonuclear leukocytes against established biofilms of Pseudomonas aeruginosa.

Antimicrob Agents Chemother

Infectious Diseases Laboratory, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration Hospital, Thessaloniki, Greece

Published: April 2015

Pseudomonas aeruginosa is the most common pathogen infecting the lower respiratory tract of cystic fibrosis (CF) patients, where it forms tracheobronchial biofilms. Pseudomonas biofilms are refractory to antibacterials and to phagocytic cells with innate immunity, leading to refractory infection. Little is known about the interaction between antipseudomonal agents and phagocytic cells in eradication of P. aeruginosa biofilms. Herein, we investigated the capacity of three antipseudomonal agents, amikacin (AMK), ceftazidime (CAZ), and ciprofloxacin (CIP), to interact with human polymorphonuclear leukocytes (PMNs) against biofilms and planktonic cells of P. aeruginosa isolates recovered from sputa of CF patients. Three of the isolates were resistant and three were susceptible to each of these antibiotics. The concentrations studied (2, 8, and 32 mg/liter) were subinhibitory for biofilms of resistant isolates, whereas for biofilms of susceptible isolates, they ranged between sub-MIC and 2 × MIC values. The activity of each antibiotic alone or in combination with human PMNs against 48-h mature biofilms or planktonic cells was determined by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. All combinations of AMK with PMNs resulted in synergistic or additive effects against planktonic cells and biofilms of P. aeruginosa isolates compared to each component alone. More than 75% of CAZ combinations exhibited additive interactions against biofilms of P. aeruginosa isolates, whereas CIP had mostly antagonistic interaction or no interaction with PMNs against biofilms of P. aeruginosa. Our findings demonstrate a greater positive interaction between AMK with PMNs than that observed for CAZ and especially CIP against isolates of P. aeruginosa from the respiratory tract of CF patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356800PMC
http://dx.doi.org/10.1128/AAC.04934-14DOI Listing

Publication Analysis

Top Keywords

antipseudomonal agents
12
planktonic cells
12
aeruginosa isolates
12
biofilms aeruginosa
12
biofilms
11
human polymorphonuclear
8
polymorphonuclear leukocytes
8
biofilms pseudomonas
8
aeruginosa
8
pseudomonas aeruginosa
8

Similar Publications

: Although chronic infection by among patients with bronchiectasis is associated with poor prognosis, the impact of antibiotics with coverage in patients with bronchiectasis who experienced bacterial pneumonia or exacerbation of bronchiectasis has not been fully investigated. : This study targeted patients with bronchiectasis who were admitted to hospitals because of bacterial pneumonia or exacerbation of bronchiectasis between April 2018 and March 2020 using a national inpatient database in Japan. The association of antipseudomonal antibiotic treatment with in-hospital mortality was assessed after propensity score matching to adjust the patients' backgrounds.

View Article and Find Full Text PDF

: Empirical antibacterial therapy for febrile neutropenia reduces mortality due to Gram-negative blood stream infections (BSIs). Pediatric guidelines recommend monotherapy with an antipseudomonal beta-lactam or a carbapenem and to add a second anti-Gram-negative agent in selected situations. We evaluated the changes in the proportions of resistance of beta-lactam monotherapies vs.

View Article and Find Full Text PDF

Import of global high-risk clones is the primary driver of carbapenemase-producing in Norway.

J Med Microbiol

January 2025

Norwegian Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Troms, Norway.

Infections by carbapenemase-producing (CP-Pa) are concerning due to limited treatment options. The emergence of multidrug-resistant (MDR) high-risk clones is an essential driver in the global rise of CP-Pa. Insights into the molecular epidemiology of CP-Pa are crucial to understanding its clinical and public health impact.

View Article and Find Full Text PDF

Background: Antimicrobial stewardship programs (ASPs) aim to mitigate antimicrobial resistance (AMR) by optimizing antibiotic use including reducing unnecessary broad-spectrum therapy. This study evaluates the impact of ASP funding and resources on the use of broad-spectrum antibiotics in Ontario hospitals.

Methods: We conducted a cross-sectional study of antimicrobial use (AMU) across 63 Ontario hospitals from April 2020 to March 2023.

View Article and Find Full Text PDF

fibrosis is a genetic disease characterized by chronic lung infection, often with Pseudomonas aeruginosa, requiring repeated antibiotic treatment for pulmonary exacerbations. In the era of cystic fibrosis transmembrane conductance regulator modulator therapy, we assessed susceptibility to antipseudomonal antibiotics in modulator-eligible and modulator-ineligible children over 3 years and found that P. aeruginosa isolates largely remained susceptible to standard parenteral but not oral antimicrobial agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!