Objectives: The viability of probiotic bacteria during formulation processes and delivery is vital to ensure health benefits. This study focuses on the use of gastro-resistant denatured ovalbumin for the targeted delivery of probiotic Lactobacillus acidophilus to simulated human intestinal and colon conditions through a bi-layered mini-tablet-in-tablet system (BMTTS).

Methods: The BMTTS consists of two gastro-resistant ovalbumin mini-tablets containing L. acidophilus suspended in lactose and eudragit S100 for targeted intestinal and colonic delivery respectively. Luminescence has been utilized to ensure probiotic viability during formulation processes in addition to determining all probiotic release profiles. The mechanism of probiotic release from the ovalbumin matrix was ascertained using mathematical modelling and molecular docking studies. Magnetic resonance imaging and differential scanning calorimetry are also included as part of the in-vitro characterization of the ovalbumin system.

Key Findings: The BMTTS was effective in the delivery of L. acidophilus to simulated human intestinal and colon conditions. Formulation processes were furthermore determined to maintain probiotic viability. Statistical analysis of the release data noted a significant effect of pH denaturation on the release properties of ovalbumin. Magnetic resonance imaging results have indicated a decrease in ovalbumin matrix size upon exposure to simulated intestinal fluid. Molecular docking studies carried out depicted the interaction and binding positions inherent to the ovalbumin-pancreatic trypsin interaction complex indicating the possible enzymatic degradation of ovalbumin leading to the release of the probiotic from the protein matrix.

Conclusions: The BMTTS has been determined to be effective in the protection and delivery of probiotic L. acidophilus to simulated human intestinal and colonic conditions. Molecular docking analysis has noted that pancreatin exerts a significant effect on probiotic release from the gastro-resistant ovalbumin matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jphp.12389DOI Listing

Publication Analysis

Top Keywords

simulated human
16
human intestinal
16
gastro-resistant ovalbumin
12
intestinal colon
12
colon conditions
12
formulation processes
12
probiotic release
12
ovalbumin matrix
12
molecular docking
12
probiotic
10

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

AC Immune SA, Lausanne, Switzerland.

Background: The key advantage of active immunization is the induction of sustained, polyclonal antibody responses that are readily boosted by occasional immunizations. Recent clinical trial outcomes for monoclonal antibodies lecanemab and donanemab, establish the relevance of targeting pathological Abeta for clearing amyloid plaques in Alzheimer's disease. ACI-24.

View Article and Find Full Text PDF

Background: Lyn kinase, a member of the Src family of tyrosine kinases, predominantly phosphorylates ITIM and ITAM motifs linked to immune receptors and adaptor proteins, and is emerging as a target for Alzheimer's disease (AD). The role of Lyn in TREM2-mediated microglial activation and phagocytosis, a critical pathway for clearing Aβ plaques, remains unclear and potent, selective, and brain penetrant Lyn inhibitors are unavailable. In this study, we report the characterization of Lyn kinase inhibitors from the literature as well as the establishment of an advanced virtual screening platform at the IUSM-Purdue-TREAT-AD center to identify new type II Lyn inhibitors suitable as molecular probes.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Merck & Co., Inc., Rahway, NJ, USA.

Background: Recent anti-amyloid mAb trial results demonstrate slowing of Alzheimer's disease progression, but to date do not fully halt or reverse this progression. Optimization of anti-amyloid therapy (timing and duration of intervention, modality, combinations, biomarker guidance) is limited by incomplete understanding of the disease, such as relationship between amyloid and tau pathways. Mechanistic Alzheimer's progression modeling investigated how amyloid and tau pathologies are connected in driving progression.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Eisai Inc., Nutley, NJ, USA.

Background: Lecanemab is a humanized IgG1 monoclonal antibody binding with high affinity to protofibrils of amyloid-beta (Aβ) protein. In clinical studies, lecanemab has been shown to reduce markers of amyloid in early symptomatic Alzheimer's disease (AD) and slow decline on clinical endpoints of cognition and function. Herein, a modeling approach was used to correlate amyloid reduction with change in rate of AD progression.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Eisai Inc., Nutley, NJ, USA.

Background: Lecanemab is an approved anti-amyloid monoclonal antibody that binds with highest affinity to soluble Aβ protofibrils, which are more toxic than monomers or insoluble fibrils/plaque. In clinical studies, biweekly lecanemab treatment demonstrated a slowing of decline in clinical (global, cognitive, functional, and quality of life) outcomes, and reduction in brain amyloid in early Alzheimer's disease (AD). Herein, we describe the impact of lecanemab treatment on tau PET.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!