A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A practical guide for using registry data to inform decisions about the cost effectiveness of new cancer drugs: lessons learned from the PHAROS registry. | LitMetric

A practical guide for using registry data to inform decisions about the cost effectiveness of new cancer drugs: lessons learned from the PHAROS registry.

Pharmacoeconomics

Department of Health Policy and Management, institute for Medical Technology Assessment, Erasmus University, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands.

Published: June 2015

Decision makers increasingly request evidence on the real-world cost effectiveness of a new treatment. There is, however, a lack of practical guidance on how to conduct an economic evaluation based on registry data and how this evidence can be used in actual decision making. This paper explains the required steps on how to perform a sound economic evaluation using examples from an economic evaluation conducted with real-world data from the Dutch Population based HAematological Registry for Observational Studies. There are three main issues related to using registry data: confounding by indication, missing data, and insufficient numbers of (comparable) patients. If encountered, it is crucial to accurately deal with these issues to maximize the internal validity and generalizability of the outcomes and their value to decision makers. Multivariate regression modeling, propensity score matching, and data synthesis are well-established methods to deal with confounding. Multiple imputation methods should be used in cases where data are missing at random. Furthermore, it is important to base the incremental cost-effectiveness ratio of a new treatment compared with its alternative on comparable groups of (matched) patients, even if matching results in a small analytical population. Unmatched real-world data provide insights into the costs and effects of a treatment in a real-world setting. Decision makers should realize that real-world evidence provides extremely valuable and relevant policy information, but needs to be assessed differently compared with evidence derived from a randomized clinical trial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445765PMC
http://dx.doi.org/10.1007/s40273-015-0260-4DOI Listing

Publication Analysis

Top Keywords

registry data
12
decision makers
12
economic evaluation
12
data
8
cost effectiveness
8
real-world data
8
registry
5
real-world
5
practical guide
4
guide registry
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!