In the current study, well-defined polymer brushes are shown as an effective surface modification to resist the adhesion of whole blood and its components. Poly[oligo(ethylene glycol)methylether methacrylate] (poly(MeOEGMA)), poly(hydroxyethyl methacrylate) (poly(HEMA)), poly[N-(2-hydroxypropyl) methacrylamide] (poly(HPMA)), and poly(carboxybetaine acrylamide) (poly(CBAA)) brushes were grown by surface initiated atom transfer radical polymerization (SI-ATRP) and subsequently characterized by Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), dynamic contact angle measurements, atomic force microscopy (AFM), and surface plasmon resonance (SPR) spectroscopy. All brushes decreased the fouling from blood plasma over 95% and prevented the adhesion of platelets, erythrocytes, and leukocytes as evidenced by SPR and SEM measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.201400470 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!