Predicting effects of climate change on species and ecosystems depend on understanding responses to shifts in means (such as trends in global temperatures), but also shifts in climate variability. To evaluate potential responses of anadromous fish populations to an increasingly variable environment, we performed a hierarchical analysis of 21 Chinook salmon populations from the Pacific Northwest, examining support for changes in river flows and flow variability on population growth. More than half of the rivers analyzed have already experienced significant increases in flow variability over the last 60 years, and this study shows that this increase in variability in freshwater flows has a more negative effect than any other climate signal included in our model. Climate change models predict that this region will experience warmer winters and more variable flows, which may limit the ability of these populations to recover.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.12847 | DOI Listing |
J Fish Biol
January 2025
Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, Dorset, UK.
Anadromous salmonids migrate seaward to exploit feeding and growth opportunities in marine habitats, yet how smolt biological characteristics influence their marine migratory behavior remains poorly understood. This study used 9 years of trout (Salmo trutta) population monitoring data from 15,595 tagged age-0+ parr, 1033 smolts detected migrating downstream in spring, and 99 adults detected returning from their first marine migration to the River Frome (Dorset, UK) to investigate the influence of smolt biological characteristics on their migration timing and maiden marine sojourn duration. Age-specific differences in the influence of smolt length on migration timing were found, with longer 1-year-old smolts emigrating later than their shorter counterparts within the same age class, but the opposite association existed for 2-year-old smolts.
View Article and Find Full Text PDFJ Texture Stud
February 2025
MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Universidade de Évora, Évora, Portugal.
Assessment of sea lamprey texture from the Guadiana and Mondego River basins. Lamprey has served as food for centuries, and nowadays it is highly appreciated, mainly in southern European countries. Therefore, the quality requirements of the lamprey are closely scrutinized by consumers.
View Article and Find Full Text PDFPolar Biol
January 2025
Fisheries and Marine Institute, Memorial University of Newfoundland and Labrador, St. John's, NL Canada.
Unlabelled: iKaluk, Inuttitut for Arctic charr (), holds significant commercial and cultural value for Inuit communities throughout Nunatsiavut. Studies evaluating iKaluk habitat associations in freshwater are plentiful; however, there is limited information on the ecological makeup and sediment characteristics of anadromous charr habitats in marine environments. This study investigated the benthic associations of Arctic charr during their marine residency period in Nain, Nunatsiavut, using underwater videos, harvester-identified fishing locations, and acoustic telemetry.
View Article and Find Full Text PDFRSC Adv
December 2024
Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
Waste generation from fish processing sectors has become a significant environmental concern. This issue is exacerbated in countries with high aquaculture production and inefficient fish scale (FS) utilization. This study prepared and compared highly crystalline hydroxyapatite (HAp) from the FS of an anadromous fish, (I-HAp), and a freshwater fish, (R-HAp).
View Article and Find Full Text PDFJ Exp Biol
December 2024
Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, Canada.
While corticosteroids, including cortisol, have conserved osmoregulatory functions, the relative involvement of other stress-related hormones in osmoregulatory processes remains unclear. To address this gap, we initially characterized the gill corticotropin-releasing factor (CRF) system of Atlantic salmon (Salmo salar) and then determined: 1) how it is influenced by osmotic disturbances; 2) whether it is affected by cortisol; and 3) which physiological processes it regulates in the gills. Most CRF system components were expressed in the gills with CRF receptor 2 (crfr2a), CRF binding protein (crfbp1 and crfbp2), and urocortin 2 (ucn2a) being the most abundant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!