The thermoluminescence (TL) glow curves and kinetics parameters of Thulium (Tm) doped silica cylindrical fibers (CF) are presented. A linear accelerator (LINAC) was used to deliver high-energy radiation of 21MeV electrons and 10MV photons. The CFs were irradiated in the dose range of 0.2-10Gy. The experimental glow curve data was reconstructed by using WinREMS. The WinGCF software was used for the kinetic parameters evaluation. The TL sensitivity of Tm-doped silica CF is about 2 times higher as compared to pure silica CF. Tm-doped silica CF seems to be more sensitive to 21MeV electrons than to 10MV photons. Surprisingly, no supralinearity was displayed and a sub-linear response of Tm-doped silica CF was observed within the analyzed dose range for both 21MeV electrons and 10MV photons. The Tm-doped silica CF glow curve consists of 5 individual glow peaks. The Ea of peak 4 and peak 5 was highly dependent on dose when irradiated with photons. We also noticed that the electron radiation (21MeV) caused a shift of glow peak by 7-13°C to the higher temperature region compared with photons radiation (10MV). Our Tm-doped fibers seem to give high TL response after 21MeV electrons, which gives around 2 times higher peak integral as compared with 10MV photon radiation. We concluded that peak 4 is the first-order kinetic peak and can be used as the main dosimetric peak of Tm-doped silica CF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2015.01.016 | DOI Listing |
We present a direct comparison between two types of femtosecond 2 µm sources used for seeding of an ultrafast thulium-doped fiber amplifier based on all-normal dispersion supercontinuum and soliton self-frequency shift. Both nonlinear effects were generated in microstructured silica fibers, pumped with low-power femtosecond pulses at 1.56 µm originating from an erbium-doped fiber laser.
View Article and Find Full Text PDFUsing commercial Tm-doped silica fiber and 1570-nm in-band pump source, we demonstrated an efficient 1720-nm all-fiber laser with ring-cavity configuration. The theoretical model based on rate equations was built up to analyze the laser performance of Tm-doped fiber, which exhibits strong absorption in the 1.7-μm region.
View Article and Find Full Text PDFWe demonstrate the rapid photodarkening (PD) phenomenon in Tm-doped fiber (TDF) core pumped by a laser at 1080 nm and the bleaching effect of deuterium (${{\rm D}_2}$D) on PD TDF. By ${{\rm D}_2}$D loading for seven days, the PD-induced excess loss (PIEL) in the visible (VIS) and near-infrared (NIR) region have been largely eliminated, and no degradation was observed within 30 days. PD resistance of the ${{\rm D}_2}$D pretreated TDF has been investigated as well.
View Article and Find Full Text PDFWe fabricate and characterize a germanium/thulium (Ge/Tm) co-doped silica fiber in order to enhance the gain at the short wavelength edge of the thulium emission band (i.e. 1620-1660 nm).
View Article and Find Full Text PDFWe report a hybrid process by combining both vapor-phase and solution-doping techniques of rare-earth doped preform fabrication in conjunction with the MCVD technique, in order to fabricate highly efficient Tm-doped laser fibers. The proposed fabrication route takes advantage of co-doping silica with high alumina content through the vapor-phase doping process, which is otherwise difficult to achieve using conventional solution doping technique. In addition, by employing the solution doping method, high-purity thulium halide precursors that have low vapor pressures up to several hundred degree Celsius.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!