The direct oxidative cross-coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross-coupled imines through the synergistic combination of low loadings of Cu(II) metal-catalyst and o-iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross-coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201405843 | DOI Listing |
Emerg Med Australas
February 2025
Gifted Mathematics Program, Montfort College, Chiang Mai, Thailand.
Objective: The present study aimed to compare time to effective pain relief between diclofenac 75 mg intramuscular (IM) and tramadol 50 mg intravenous (IV) for ED patients with acute renal colic.
Methods: A randomised, double-blinded, sham-controlled, superiority trial was conducted. Patients diagnosed with acute renal colic (hydronephrosis and/or stone visualisation on point-of-care ultrasound) in the ED were randomly assigned to receive an IM injection of 75 mg of diclofenac or IV tramadol 50 mg.
Org Lett
January 2025
Organic Chemistry Department, Faculty of Science, Autonomous University of Madrid, 28049 Madrid, Spain.
The functionalization of the C-N bond of amines is a straightforward strategy for the construction of complex scaffolds or for the late-stage functionalization of pharmaceuticals. Herein, we describe a photoredox-catalyzed strategy for the deaminative alkylation of primary amine-derived isonitriles that provides unnatural amino acid derivatives under mild conditions. The use of silacarboxylic acids as silyl radical precursors enables the generation of carbon-centered radicals that allow the construction of Csp-Csp bonds via a Giese-type addition, avoiding the undesired hydrodeamination product.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
We report a Ni-catalyzed vicinal alkylarylation of unactivated alkenes in γ,δ- and δ,ε-alkenylamines with aryl halides and alkylzinc reagents. The reaction is enabled by amine coordination and can use all primary, secondary, and tertiary amines. The reaction constructs two new C(sp)-C(sp) and C(sp)-C(sp) bonds and produces δ- and ε-arylamines with C(sp)-branching at the γ- and δ-positions.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Dow Chem (China) Invest Co. Ltd., Shanghai, China.
An automated method was developed to simultaneously measure primary amines and short-chain aldehydes emission from foam and rubber samples in one experiment. The technique involved dynamic solid-phase microextraction (SPME) on-fiber derivatization coupled with a flow-cell unit. The parameters of the dynamic SPME on-fiber derivatization method were optimized, including SPME coating, derivatization agents loading temperature, loading time, and dynamic SPME extraction time.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.
Neurological disorders are the leading health threats worldwide, characterized by impairments in consciousness, cognition, movement, and sensation, and can even lead to death. UFMylation is a novel post-translational modification (PTM) that serves as an important regulatory factor, promoting the complexity of protein structures and enhancing the diversity and specificity of functions. In UFMylation, ubiquitin-fold modifier 1 (UFM1) is covalently transferred to the primary amine of a lysine residue on the target protein through the synergistic action of three enzymes: the activating enzyme E1 of UFM1, the coupling enzyme E2 of UFM1, and the ligase E3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!