The aim of the study was to evaluate the effect of thermal cycling on the shear bond strength of the porcelain/Ti-6Al-4V interfaces prepared by two different processing routes and metallic surface conditions. Polished and SiO2 particle abraded Ti-6Al-4V alloy and Triceram bonder porcelain were used to produce the interfaces. Porcelain-to-metal specimens were processed by conventional furnace firing and hot pressing. Thermal cycling was performed in Fusayama's artificial saliva for 5000 cycles between 5 ± 1 and 60 ± 2°C. After thermal cycling, shear bond tests were carried out by using a custom-made stainless steel apparatus. The results were analyzed using t-Student test and non-parametric Kruskal-Wallis test (p<0.01). Most of the polished-fired specimens were fractured during thermal cycling; thus, it was not possible to obtain the shear bond strength results for this group. Sandblasted-fired, polished-hot pressed, and sandblasted-hot pressed specimens presented the shear bond strength values of 76.2 ± 15.9, 52.2 ± 23.6, and 59.9 ± 22.0 MPa, respectively. Statistical analysis indicated that thermal cycling affected the polished specimens processed by firing, whereas a significant difference was not observed on the other groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2015.01.004 | DOI Listing |
Adv Healthc Mater
January 2025
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
Burn care and treatment differ markedly from other types of wounds, as they are significantly more prone to infections and struggle to maintain fluid balance post-burn. Moreover, the limited self-healing abilities exacerbate the likelihood of scar formation, further complicating the recovery process. To tackle these issues, an asymmetric wound dressing comprising a quercetin-loaded poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB@Qu) hydrophilic layer and a zinc oxide nanoparticle-loaded, thermally treated polyvinylidene fluoride (HPVDF@ZnO) hydrophobic layer is designed.
View Article and Find Full Text PDFFoods
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
Green peas, with their high moisture content, require effective drying techniques to extend shelf life while preserving quality. Traditional drying methods face challenges due to the dense structure of the seed coat and wax layer, which limits moisture migration. This study investigates cold plasma (CP) pretreatment as a novel approach to enhance drying kinetics and maintain the quality attributes of green peas.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Energy and Automotive Engineering, Shunde Polytechnic, Foshan 528300, China.
A novel organic-inorganic eutectic phase change material (PCM) based on sodium acetate trihydrate (SAT) and polyethylene glycol (PEG) was developed to meet the needs of heat recovery and building heating. Three kinds of PEG with different molecular weights were selected to form organic-inorganic eutectic PCM with SAT. The thermal properties of three series of SAT-PEG eutectic PCM were compared based on DSC results, focusing on the impact of PEG addition on the phase change temperature and enthalpy of SAT, as well as the melting uniformity.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Structural Materials and Construction Chemistry, University of Kassel, 34117 Kassel, Germany.
The initial investigation evaluates the feasibility of ultra high performance concrete (UHPC) as a material for reusable molds in aluminum casting. Two specific UHPC formulations were investigated: one based on ordinary Portland cement (OPC) and another utilizing alkali-activated materials (AAM). The study focused on investigating the surface through roughness measurements and the thermal durability through repeated casting cycles.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Arnold-Heller-Straße 16, 24105 Kiel, Germany.
This study was conducted to evaluate the material properties of polymer-infiltrated zinc oxide networks (PICN) and the effect of using a phosphate monomer-containing primer applied before polymer infiltration. A total of 148 ZnO-network (zinc oxide) specimens were produced: = 74 were treated with a primer before polymer infiltration and light curing, while the remaining specimens were untreated. Each group was divided into two subgroups ( = 37) based on the infiltrating polymer: UDMA (aliphatic urethane-dimethacrylates)-TEGDMA (triethylene glycol-dimethacrylate) or BisGMA (bisphenol A-glycidyl-methacrylate)-TEGDMA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!