A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344626 | PMC |
http://dx.doi.org/10.3390/toxins7020322 | DOI Listing |
As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD.
View Article and Find Full Text PDFThe transgenic SOD1G93A mouse model is the most widely used animal model of amyotrophic lateral sclerosis (ALS), a fatal disease of motor neuron degeneration. While genetic background influences onset and progression variability of motor dysfunction, the C57BL/6 background most reliably exhibits robust ALS phenotypes; thus, it is the most widely used strain in mechanistic studies. In this model, paresis begins in the hindlimbs and spreads rostrally to the forelimbs.
View Article and Find Full Text PDFTrials
January 2025
Department of Physiotherapy, Melbourne School of Health Science, University of Melbourne, Melbourne, Australia.
Background: Non-invasive ventilation (NIV) uses positive pressure to assist people with respiratory muscle weakness or severe respiratory compromise to breathe. Most people use this treatment during sleep when breathing is most susceptible to instability. The benefits of using NIV in motor neurone disease (MND) are well-established.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that primarily affects the motor neurons in the brain and spinal cord. While the exact cause of ALS is not fully understood, a combination of genetic and environmental factors is believed to contribute to its development. Growth arrest-specific 6 (Gas6), a vitamin K-dependent protein, has been recognized to enhance oligodendrocytes and neurons' survival and is associated with different kinds of (neuro)inflammatory conditions.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Human Nutrition, Ohio State University, Columbus, OH, 43210; Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210; Center for RNA Biology, Ohio State University, Columbus, OH, 43210.
Zinc is an essential micronutrient that serves as a cofactor in a wide variety of enzymes, including Cu-Zn Superoxide Dismutase 1 (Sod1). We have discovered in Schizosaccharomyces pombe that Sod1 mRNA and protein levels are regulated in response to cellular zinc availability. We demonstrate that lower levels of Sod1 mRNA and protein accumulate under low zinc conditions, and that this regulation does not require the sod1 promoter or known factors that regulate transcription of sod1 in response to zinc and other environmental stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!