Tablet computer use requires substantial head and neck flexion, which is a risk factor for neck pain. The goal of this study was to evaluate the biomechanics of the head-neck system during seated tablet computer use under a variety of conditions. A physiologically relevant variable, gravitational demand (the ratio of gravitational moment due to the weight of the head to maximal muscle moment capacity), was estimated using a musculoskeletal model incorporating subject-specific size and intervertebral postures from radiographs. Gravitational demand in postures adopted during tablet computer use was 3-5 times that of the neutral posture, with the lowest demand when the tablet was in a high propped position. Moreover, the estimated gravitational demand could be correlated to head and neck postural measures (0.48 < R(2) < 0.64, p < 0.001). These findings provide quantitative data about mechanical requirements on the neck musculature during tablet computer use and are important for developing ergonomics guidelines. Practitioner Summary: Flexed head and neck postures occur during tablet computer use and are implicated in neck pain. The mechanical demand on the neck muscles was estimated to increase 3-5 times during seated tablet computer use versus seated neutral posture, with the lowest demand in a high propped tablet position but few differences in other conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00140139.2015.1005166 | DOI Listing |
Sci Rep
January 2025
Department of Energy Engineering & Physics, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
The depletion of fossil fuel reserves, increasing environmental concerns, and energy demands of remote communities have increased the acceptance of using hybrid renewable energy systems (HRES). However, choosing an optimal HRES from economic, environmental, reliability, and sustainability aspects is still challenging. To solve this challenge, this study introduces a novel multi-objective optimization approach using the Gravitational Search Algorithm (GSA) and non-dominated sorting techniques.
View Article and Find Full Text PDFAging Dis
December 2024
Department of Biomechanics, Poznan University of Physical Education, Poznań, Poland.
This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines).
View Article and Find Full Text PDFNurs Philos
January 2025
School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal.
Through technical rationality, healthcare professionals address instrumental problems by applying the theory and technique arising from scientific knowledge. Nevertheless, the divergent situations of practice characterised by uncertainty, instability, and uniqueness place nurses in a positivist epistemological dilemma. Decision-making under uncertainty is a challenge that nurses face in clinical practice daily.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
Department of Biomedical Engineering, The Catholic University of America, Washington, District of Columbia, United States.
The objective was to determine whether gravity support for the left arm of right-handed participants would increase left arm use during a three-dimensional (3-D) reaching task in virtual reality. Twelve healthy control participants each completed 630 reaching movements broken into six blocks. The majority of targets were placed close to the midsagittal plane at three heights, and participants were free to use either limb when reaching for targets.
View Article and Find Full Text PDFSports (Basel)
September 2024
Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.
The incorporation of triaxial accelerometers into Global Positioning Systems (GPS) has significantly advanced our understanding of accelerations in sports. However, inter-positional differences are unknown. This study aimed to explore the variability of acceleration and deceleration (Acc) distribution curves according to players' positions during soccer matches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!