Scanning electron microscopy (SEM) has been successfully used to image biofilms because of its high resolution and magnification. However, conventional SEM requires dehydration and metal coating of biological samples before observation, and because biofilms consist mainly of water, sample dehydration may influence the biofilm structure. When coated with an ionic liquid, which is a kind of salt that exists in the liquid state at room temperature, biological samples for SEM observation do not require dehydration or metal coating because ionic liquids do not evaporate under vacuum conditions and are electrically conductive. This study investigates the ability of ionic liquids to allow SEM observation of biofilms compared with conventional coating methods. Two hydrophilic and two hydrophobic ionic liquids, all of which are electronic conductors, are used. Compared with samples prepared by the conventional method, the ionic-liquid-treated samples do not exhibit a fibrous extracellular matrix structure and cracking on the biofilm surface. The hydrophilic ionic liquids give clearer images of the biofilm structure than those of the hydrophobic ionic liquids. This study finds that ionic liquids are useful for allowing the observation of biofilms by SEM without preparation by dehydration and metal coating.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305086PMC
http://dx.doi.org/10.1186/s13568-015-0097-4DOI Listing

Publication Analysis

Top Keywords

ionic liquids
28
dehydration metal
12
metal coating
12
observation biofilms
12
scanning electron
8
electron microscopy
8
ionic
8
biological samples
8
biofilm structure
8
sem observation
8

Similar Publications

CO capture is an important process for mitigating CO emissions in the atmosphere. Recently, ionic liquids have been identified as possible systems for CO capture processes. Major drawbacks of such systems are mostly in the high cost of synthesis of such liquids and poor biodegradability.

View Article and Find Full Text PDF

Interfacial Constructing Poly(ionic liquids) on Nanoporous Block Copolymers for Antifouling Ultrafiltration.

Langmuir

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China.

The remarkable flexibility in structural tunability and designability of poly(ionic liquids) (PILs) has garnered significant attention. Integration of PILs with membranes, novel properties, and functionalities is anticipated for applications in the fields of membrane separation. Here, we develop a facile method to prepare PIL-functionalized membranes in a one-step process by combining selective swelling-induced pore generation and ionic liquid functionalization.

View Article and Find Full Text PDF

Efficient removal of TcO from radioactive effluents while recovering drinking water remains a challenge. Herein, an excellent ReO (a nonradioactive surrogate of TcO ) scavenger is presented through covalently bonding imidazolium poly(ionic liquids) polymers with an ionic porous aromatic framework (iPAF), namely iPAF-P67, following an adsorption-site density-addition strategy. It shows rapid sorption kinetics, high uptake capacity, and exceptional selectivity toward ReO .

View Article and Find Full Text PDF

The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.

View Article and Find Full Text PDF

Palladium catalysts form a cornerstone of modern chemistry with upmost scientific and industrial impact. Bulk palladium metal itself is chemically inert, and a sequence of chemical transformations has to be utilized to convert the metal into Pd pre-catalyst covered by ligands. However, the "cocktail" of catalysis concept discovered recently has shown that Pd systems can efficiently operate in catalysis without the necessity of a complicated and expensive pre-installed ligand environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!