Genomics has revolutionized the research on fungal secondary metabolite (SM) biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific SM compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies have further improved the speed and reduced the cost of microbial genome sequencing in the past few years, which has accelerated the research in this field. Here, we will present an example work flow for identifying the gene cluster encoding the biosynthesis of SMs of interest using an NGS approach. We will also review the different strategies that can be employed to pinpoint the targeted gene clusters rapidly by giving several examples stemming from our work.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294208 | PMC |
http://dx.doi.org/10.3389/fmicb.2014.00774 | DOI Listing |
Cancer Genet
January 2025
Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
Collision tumors, characterized by the coexistence of two unique neoplasms in close approximation, are rare and pose diagnostic challenges. This is particularly true when the unique neoplasms are of the same histologic type. Here we report such a case where comprehensive tumor profiling by next generation sequencing (NGS) as well as immunohistochemistry revealed two independent adenocarcinomas comprising what was initially diagnosed as a single adenocarcinoma of the gastroesophageal (GEJ) junction.
View Article and Find Full Text PDFEur J Endocrinol
January 2025
Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany.
Objective: The effects of sex hormones remain largely unexplored in pheochromocytomas and paragangliomas (PPGLs) and gastroenteropancreatic neuroendocrine tumors (GEP-NETs).
Methods: We evaluated the effects of estradiol, progesterone, Dehydroepiandrosterone sulfate (DHEAS), and testosterone on human patient-derived PPGL/GEP-NET primary culture cell viability (n = 38/n = 12), performed next-generation sequencing and immunohistochemical hormone receptor analysis in patient-derived PPGL tumor tissues (n = 36).
Results: In PPGLs, estradiol and progesterone (1 µm) demonstrated overall significant antitumor effects with the strongest efficacy in PPGLs with NF1 (cluster 2) pathogenic variants.
J Phys Chem B
January 2025
Institute of Quantitative Biology, College of Life Sciences, and School of Physics, Zhejiang University, Hangzhou, Zhejiang 310058, China.
The emergence of nanopores in two-dimensional (2D) nanomaterials offers an attractive solid-state platform for high-throughput and low-cost DNA sequencing. However, several challenges remain to be addressed before their wide application, including the too-fast DNA translocation speed (compared to state-of-the-art single nucleoside detection techniques) and too large noise/signal ratios due to DNA fluctuations inside the nanopores. Here, we use molecular dynamics (MD) simulations to demonstrate the feasibility of utilizing RNA-DNA interactions in modulating DNA translocations in 2D MoS nanopores.
View Article and Find Full Text PDFJ Surg Oncol
January 2025
Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, USA.
Background: Biliary tract cancers (BTCs) represent distinct biological and genomic entities. Anatomic and geographic heterogeneity in genomic profiling of BTC subtypes, genomic co-alterations, and their impact on long-term outcomes are not well defined.
Methods: Genomic data to characterize alterations among patients with BTCs were derived from the AACR GENIE registry (v15.
Proteins have proven to be useful agents in a variety of fields, from serving as potent therapeutics to enabling complex catalysis for chemical manufacture. However, they remain difficult to design and are instead typically selected for using extensive screens or directed evolution. Recent developments in protein large language models have enabled fast generation of diverse protein sequences in unexplored regions of protein space predicted to fold into varied structures, bind relevant targets, and catalyze novel reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!