A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Binocular fusion and invariant category learning due to predictive remapping during scanning of a depthful scene with eye movements. | LitMetric

Binocular fusion and invariant category learning due to predictive remapping during scanning of a depthful scene with eye movements.

Front Psychol

Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, Center of Excellence for Learning in Education, Science and Technology, Center for Computational Neuroscience and Neural Technology, and Department of Mathematics Boston University, Boston, MA, USA.

Published: February 2015

How does the brain maintain stable fusion of 3D scenes when the eyes move? Every eye movement causes each retinal position to process a different set of scenic features, and thus the brain needs to binocularly fuse new combinations of features at each position after an eye movement. Despite these breaks in retinotopic fusion due to each movement, previously fused representations of a scene in depth often appear stable. The 3D ARTSCAN neural model proposes how the brain does this by unifying concepts about how multiple cortical areas in the What and Where cortical streams interact to coordinate processes of 3D boundary and surface perception, spatial attention, invariant object category learning, predictive remapping, eye movement control, and learned coordinate transformations. The model explains data from single neuron and psychophysical studies of covert visual attention shifts prior to eye movements. The model further clarifies how perceptual, attentional, and cognitive interactions among multiple brain regions (LGN, V1, V2, V3A, V4, MT, MST, PPC, LIP, ITp, ITa, SC) may accomplish predictive remapping as part of the process whereby view-invariant object categories are learned. These results build upon earlier neural models of 3D vision and figure-ground separation and the learning of invariant object categories as the eyes freely scan a scene. A key process concerns how an object's surface representation generates a form-fitting distribution of spatial attention, or attentional shroud, in parietal cortex that helps maintain the stability of multiple perceptual and cognitive processes. Predictive eye movement signals maintain the stability of the shroud, as well as of binocularly fused perceptual boundaries and surface representations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294135PMC
http://dx.doi.org/10.3389/fpsyg.2014.01457DOI Listing

Publication Analysis

Top Keywords

eye movement
16
predictive remapping
12
category learning
8
learning predictive
8
eye movements
8
spatial attention
8
invariant object
8
object categories
8
maintain stability
8
eye
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!