Tissue engineering offers an attractive approach to creating functional small-diameter (<5mm) blood vessels by combining autologous cells with a natural and/or synthetic scaffold under suitable culture conditions, which results in a tubular construct that can be implanted in vivo. We have previously developed a vascular scaffold fabricated by electrospinning poly(ε-caprolactone) (PCL) and type I collagen that mimics the structural and biomechanical properties of native vessels. In this study, we investigated whether a smooth muscle cell (SMC) sheet could be combined with the electrospun vascular scaffolds to produce a more mature smooth muscle layer as compared to the conventional cell seeding method. The pre-fabricated SMC sheet, wrapped around the vascular scaffold, provided high cell seeding efficiency (approx. 100%) and a mature smooth muscle layer that expressed strong cell-to-cell junction, connexin 43 (CX43), and contractile proteins, α smooth muscle actin (α-SMA) and myosin light chain kinase (MLCK). Moreover, bioreactor-associated preconditioning of the SMC sheet-combined vascular scaffold maintained high cell viability (95.9 ± 2.7%) and phenotypes and improved cellular infiltration and mechanical properties (35.7% of tensile strength, 47.5% of elasticity, and 113.2% of elongation at break).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2015.01.030 | DOI Listing |
J Math Biol
January 2025
Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon.
View Article and Find Full Text PDFSci Rep
January 2025
Xingtai Naknor Technology Co., Ltd, Xingtai, 054000, China.
The heating oil circuit plays an essential role in the heating calendering roller for the lithium battery pole piece. To achieve the optimization of the heating oil circuit, a fluid-thermal-structural coupling method and a multi-objective optimization procedure are proposed to obtain the optimal solution. A fluid-thermal-structural coupling flowchart based on the numerical modeling for the calendering roller temperature distribution is created to automate the analysis processes in the optimization iteration.
View Article and Find Full Text PDFSci Rep
January 2025
School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
Accurate and rapid segmentation of key parts of frozen tuna, along with precise pose estimation, is crucial for automated processing. However, challenges such as size differences and indistinct features of tuna parts, as well as the complexity of determining fish poses in multi-fish scenarios, hinder this process. To address these issues, this paper introduces TunaVision, a vision model based on YOLOv8 designed for automated tuna processing.
View Article and Find Full Text PDFSci Rep
January 2025
Information Institute of the Ministry of Emergency Management of PR China, Beijing, 100029, People's Republic of China.
Slopes influenced by multiple faults are prone to large-scale landslides triggered by multi-regional failures. Understanding the failure process and sequence is essential for the sustainable development of mining operations. This paper presents a method combining InSAR monitoring and numerical simulation to analyze the failure processes of slopes affected by multiple faults.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!