The physiological role of cystic fibrosis transmembrane conductance regulator (CFTR) in keratinocytes and skin wound healing is completely unknown. The present study shows that CFTR is expressed in the multiple layers of keratinocytes in mouse epidermis and exhibits a dynamic expression pattern in a dorsal skin wound healing model, with diminishing levels observed from day 3 to day 5 and re-appearing from day 7 to day 10 after wounding. Knockdown of CFTR in cultured human keratinocytes promotes cell migration but inhibits differentiation, while overexpression of CFTR suppresses migration but enhances differentiation, indicating an important role of CFTR in regulating keratinocyte behavior. In addition, we have demonstrated a direct association of CFTR with epithelial junction formation as knockdown of CFTR downregulates the expression of adhesion molecules, such as E-cadherin, ZO-1 and β-catenin, and disrupts the formation of cell junction, while overexpression of CFTR enhances cell junction formation. More importantly, we have shown that ΔF508cftr-/- mice with defective CFTR exhibit delayed wound healing as compared to wild type mice, indicating that normal function of CFTR is critical for wound repair. Taken together, the present study has revealed a previously undefined role of CFTR in regulating skin wound healing processes, which may have implications in injury repair of other epithelial tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.24931DOI Listing

Publication Analysis

Top Keywords

wound healing
20
cftr
12
skin wound
12
day day
8
knockdown cftr
8
overexpression cftr
8
role cftr
8
cftr regulating
8
junction formation
8
cell junction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!