Outstanding magnetic properties are highly desired for two-dimensional ultrathin semiconductor nanosheets. Here, we propose a phase incorporation strategy to induce robust room-temperature ferromagnetism in a nonmagnetic MoS2 semiconductor. A two-step hydrothermal method was used to intentionally introduce sulfur vacancies in a 2H-MoS2 ultrathin nanosheet host, which prompts the transformation of the surrounding 2H-MoS2 local lattice into a trigonal (1T-MoS2) phase. 25% 1T-MoS2 phase incorporation in 2H-MoS2 nanosheets can enhance the electron carrier concentration by an order, introduce a Mo(4+) 4d energy state within the bandgap, and create a robust intrinsic ferromagnetic response of 0.25 μB/Mo by the exchange interactions between sulfur vacancy and the Mo(4+) 4d bandgap state at room temperature. This design opens up new possibility for effective manipulation of exchange interactions in two-dimensional nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja5120908DOI Listing

Publication Analysis

Top Keywords

phase incorporation
8
1t-mos2 phase
8
exchange interactions
8
vacancy-induced ferromagnetism
4
ferromagnetism mos2
4
mos2 nanosheets
4
nanosheets outstanding
4
outstanding magnetic
4
magnetic properties
4
properties highly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!