This study analyzes the muscle moment arms of three different reverse shoulder design philosophies using a previously published method. Digital bone models of the shoulder were imported into a 3D modeling software and markers placed for the origin and insertion of relevant muscles. The anatomic model was used as a baseline for moment arm calculations. Subsequently, three different reverse shoulder designs were virtually implanted and moment arms were analyzed in abduction and external rotation. The results indicate that the lateral offset between the joint center and the axis of the humerus specific to one reverse shoulder design increased the external rotation moment arms of the posterior deltoid relative to the other reverse shoulder designs. The other muscles analyzed demonstrated differences in the moment arms, but none of the differences reached statistical significance. This study demonstrated how the combination of variables making up different reverse shoulder designs can affect the moment arms of the muscles in different and statistically significant ways. The role of humeral offset in reverse shoulder design has not been previously reported and could have an impact on external rotation and stability achieved post-operatively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.22803 | DOI Listing |
J Shoulder Elbow Surg
January 2025
Maimonides Medical Center, Department of Orthopaedic Surgery and Rehabilitation, Brooklyn, NY, USA.
Introduction: The humeral head is the second most common site for osteonecrosis but its epidemiology is poorly described. This study aimed to better understand its treatment in the United States by 1) evaluating total operative procedures with rates normalized to the annual surgical volume; 2) determining trends of non-joint preserving (shoulder arthroplasty) vs. joint preserving procedures; and 3) quantifying rates of operative techniques in different aged cohorts (<50 vs.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
January 2025
Roth | McFarlane Hand & Upper Limb Center, St Joseph's Health Care London, London, ON, Canada.
Background: Precise and accurate glenoid preparation is important for the success of shoulder arthroplasty. Despite advancements in preoperative planning software and enabling technologies, most surgeons execute the procedure manually. Patient-specific instrumentation (PSI) facilitates accurate glenoid guide pin placement for cannulated reaming; however, few commercially available systems offer depth of reaming control.
View Article and Find Full Text PDFBackground: There has been an increase in both primary anatomic (aTSA) and reverse total shoulder arthroplasty (rTSA) over the last decade, with rates peaking for patients aged 75 years and older. Despite aTSA being the mainstay of treatment for patients with glenohumeral arthritis in the absence of rotator cuff insufficiency, there has been an upward trend of rTSA utilization in the elderly due to concerns about rotator cuff integrity, regardless of deformity. The purpose of this study is to evaluate outcomes including pain, function, range of motion, satisfaction, and complications in patients 80 years or older following primary anatomic and reverse total shoulder arthroplasty for osteoarthritis without full thickness rotator cuff tears.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
January 2025
Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea. Electronic address:
Background: Few comparative studies on the correlation between stem length, stem alignment, and/or stress shielding have been conducted in reverse total shoulder arthroplasty (rTSA). This study aimed to investigate the effects of different humeral stem lengths on stem alignment and proximal stress shielding after rTSA.
Methods: A total of 320 patients who underwent primary rTSA from October 2010 to May 2020 with at least 2 years of follow-up (mean follow-up: 32.
Int J Food Microbiol
January 2025
Departamento de Ingeniería de Alimentos y del Equipamiento Agrícola, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (ETSIA), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.
The Baranyi and Geeraerd models are two of the most reliable models for the description of, respectively, microbial growth and inactivation. They are defined as a system of differential equations, whose algebraic solution can describe the microbial response during isothermal conditions, especially when combined with suitable secondary models. However, there are still large uncertainties regarding the best functions to use as secondary models for the lag phase duration (λ) and the shoulder length (S).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!