A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hypoxic regulation of functional extracellular matrix elaboration by nucleus pulposus cells in long-term agarose culture. | LitMetric

Hypoxic regulation of functional extracellular matrix elaboration by nucleus pulposus cells in long-term agarose culture.

J Orthop Res

Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania; Translational Musculoskeletal Research Center, Veterans Affairs Medical Center, Philadelphia, Pennsylvania.

Published: May 2015

Degeneration of the intervertebral discs is strongly implicated as a cause of low back pain. Since current treatments for discogenic low back pain show poor long-term efficacy, a number of new biological strategies are being pursued. For such therapies to succeed, it is critical that they be validated in conditions that mimic the unique biochemical microenvironment of the nucleus pulposus (NP), which include low oxygen tension. Therefore, the objective of this study was to investigate the effects of oxygen tension on NP cell functional extracellular matrix elaboration in 3D culture. Bovine NP cells were encapsulated in agarose constructs and cultured for 14 or 42 days in either 20% or 2% oxygen in defined media containing transforming growth factor beta-3. At each time point, extracellular matrix composition, biomechanics, and mRNA expression of key phenotypic markers were evaluated. Results showed that while bulk mechanics and composition were largely independent of oxygen level, low oxygen promoted improved restoration of the NP phenotype, higher mRNA expression of extracellular matrix and NP specific markers, and more uniform matrix elaboration. These findings indicate that culture under physiological oxygen levels is an important consideration for successful development of cell and growth factor-based regenerative strategies for the disc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408762PMC
http://dx.doi.org/10.1002/jor.22821DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
16
matrix elaboration
12
functional extracellular
8
nucleus pulposus
8
low pain
8
low oxygen
8
oxygen tension
8
mrna expression
8
oxygen
6
matrix
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!