Extracellular matrix proteins interact with cell-signaling pathways in modifying risk of achilles tendinopathy.

J Orthop Res

Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa; South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa.

Published: June 2015

The aim of this study was to investigate interactions between variants within genes encoding components of the collagen fibril and components of cell-signaling pathways within the extracellular matrix, and determine the relative contribution of these variants to Achilles tendinopathy risk in a polygenic model. A total of 339 asymptomatic control participants and 179 participants clinically diagnosed with Achilles tendinopathy were genotyped for variants within six genes encoding components of the collagen fibril and three genes encoding components of cell-signaling pathways. Logistic regression, stepwise selection, and receiver operating characteristic curve (ROC) analysis was used to select and evaluate genetic interactions and determine the relative contribution of these variants to overall genetic risk. The strongest, best fit polygenic risk model included the variables sex, three COL27A1 variants (rs4143245; rs1249744; rs946053), COL5A1 rs12722, CASP8 rs1045485, and CASP8 rs2824129 with an area under the ROC curve of 0.737 and the maximum sum of sensitivity and specificity indicators equal to 134%. Significant interactions between genes encoding components of the collagen fibril and genes encoding components of the cell-signaling pathways modify risk of Achilles tendinopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.22820DOI Listing

Publication Analysis

Top Keywords

genes encoding
20
encoding components
20
cell-signaling pathways
16
achilles tendinopathy
16
components collagen
12
collagen fibril
12
components cell-signaling
12
extracellular matrix
8
risk achilles
8
variants genes
8

Similar Publications

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis.

View Article and Find Full Text PDF

Conjugative plasmids promote the dissemination and evolution of antimicrobial resistance in bacterial pathogens. However, plasmid acquisition can produce physiological alterations in the bacterial host, leading to potential fitness costs that determine the clinical success of bacteria-plasmid associations. In this study, we use a transcriptomic approach to characterize the interactions between a globally disseminated carbapenem resistance plasmid, pOXA-48, and a diverse collection of multidrug resistant (MDR) enterobacteria.

View Article and Find Full Text PDF

The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry.

Nat Commun

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.

View Article and Find Full Text PDF

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!