Atomically thin two dimensional hexagonal boron nitride (2D h-BN) is one of the key materials in the development of new van der Waals heterostructures due to its outstanding properties including an atomically smooth surface, high thermal conductivity, high mechanical strength, chemical inertness and high electrical resistance. The development of 2D h-BN growth is still in the early stages and largely depends on rapid and accurate characterization of the grown monolayer or few layers h-BN films. This paper demonstrates a new approach to characterizing monolayer h-BN films directly on metal substrates by grazing-incidence infrared reflection absorption spectroscopy (IRRAS). Using h-BN films grown by atmospheric-pressure chemical vapor deposition on Cu and Ni substrates, two new sub-bands are found for the A2u out-of-plane stretching mode. It is shown, using both experimental and computational methods, that the lower-energy sub-band is related to 2D h-BN coupled with substrate, while the higher energy sub-band is related to decoupled (or free-standing) 2D h-BN. It is further shown that this newly-observed fine structure in the A2u mode can be used to assess, quickly and easily, the homogeneity of the h-BN-metal interface and the effects of metal surface contamination on adhesion of the layer.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr05557hDOI Listing

Publication Analysis

Top Keywords

h-bn films
12
hexagonal boron
8
boron nitride
8
metal substrates
8
h-bn
7
growth spectroscopic
4
spectroscopic characterization
4
characterization monolayer
4
monolayer few-layer
4
few-layer hexagonal
4

Similar Publications

In the present research, hexagonal boron nitride (h-BN) films were deposited by reactive high-power impulse magnetron sputtering (HiPIMS) of the pure boron target. Nitrogen was used as both a sputtering gas and a reactive gas. It was shown that, using only nitrogen gas, hexagonal-boron-phase thin films were synthesized successfully.

View Article and Find Full Text PDF

Hexagonal boron nitride (h-BN) is recognized as a 2D wide bandgap material with unique properties, such as effective photoluminescence and diverse lattice parameters. Nitride alloys containing h-BN have the potential to revolutionize the electronics and optoelectronics industries. The energy band structures of three boron-containing nitride alloys-BAlN, BGaN, and BInN-were calculated using standard density functional theory (DFT) with the hybrid Heyd-Scuseria-Ernzerhof (HSE) function to correct lattice parameters and energy gaps.

View Article and Find Full Text PDF

Hexagonal boron nitride (h-BN) bubbles are of significant interest to micro-scale hydrogen storage thanks to their ability to confine hydrogen gas molecules. Previous reports of h-BN bubble creation from grown h-BN films require electron beams under vacuum, making integrating with other experimental setups for hydrogen production impractical. Therefore, in this study, the formation of h-BN bubbles is demonstrated in a 20 nm h-BN film grown on a sapphire substrate with a 213 nm UV laser beam.

View Article and Find Full Text PDF

Ultrafast 2D Nanosheet Assembly via Spontaneous Spreading Phenomenon.

Small

September 2024

Institute of Materials and Systems for Sustainability (IMaSS) & Department of Materials Chemistry, Nagoya University, Nagoya, 464-8601, Japan.

Article Synopsis
  • The study addresses the challenge of producing large-area thin films of 2D materials while maintaining their unique properties and uniformity.
  • It reveals that a simple technique using water and alcohol solvents allows for the self-assembly of organized 2D nanosheets on a water surface, leading to the quick formation of large, uniform monolayers.
  • This method is applicable to various 2D materials and enables high-quality transfers onto different substrates, facilitating the mass production of large-size 2D nanofilms and membranes with excellent electronic and optical properties.
View Article and Find Full Text PDF

Study on the growth mechanism of monolayer and few-layer hexagonal boron nitride films on copper foil.

Phys Chem Chem Phys

July 2024

Key Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China.

During the process of synthesizing h-BN on Cu foil chemical vapor deposition (CVD), low-pressure CVD (LPCVD) typically synthesizes monolayer h-BN films, whereas atmospheric pressure CVD (APCVD) yields few-layer h-BN films. Herein, a growth mechanism for monolayer and few-layer h-BN on Cu foil is proposed using first-principles calculations: Cu(111) passivated h-BN hinders the diffusion of B and N atoms at the subsurface of Cu(111), preventing sufficient transportation of B and N atoms to the existing h-BN layer, thereby leading to the formation of monolayer h-BN in LPCVD. For APCVD, the edges of h-BN are passivated by H, which decreases the barrier energy for the diffusion of B and N atoms on the Cu(111) subsurface, and B and N atoms can easily migrate from the subsurface of Cu(111) to its surface, resulting in the nucleation of h-BN between the existing h-BN and Cu(111), and leading to the formation of few-layer h-BN films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!