Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cortistatin is a recently discovered neuropeptide that has emerged as a potential endogenous antiinflammatory peptide. As a clinical syndrome, sepsis occurs when an infection becomes amplified, leading to organ dysfunction or risk for secondary infection. Human septic shock involves excessive inflammatory cytokine production. Interleukin (IL) 1β is one of these cytokines, and it plays a pivotal role in sepsis-induced myocardial dysfunction. The aim of the present study is to evaluate whether cortistatin inhibits nucleotide-binding oligomerization domain-like receptor with a pyrin-domain 3 (NLRP3) inflammasome/caspase-1/IL-1β pathway in cardiac fibroblasts (CFs) and whether this role can subsequently affect myocardial injury.
Methods And Results: To test these processes, a murine model of cecal ligation and puncture in vivo and lipopolysaccharide-induced cardiac fibroblasts were used in vitro. We found that pretreatment with cortistatin inhibited NLRP3-mediated ASC pyroptosome formation, caspase-1 activation, and IL-1β secretion. Additionally cortistatin inhibits proinflammatory pathways (nuclear factor κB and pro-IL-1β).
Conclusions: This work provided the first evidence of cortistatin as a new immunomodulatory factor with the capacity to deactivate NLRP3 inflammasome activity and to protect against the myocardial injury induced by sepsis. This study has important implications for the design of new strategies to control NLRP3-related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cardfail.2015.01.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!