Understanding the adsorption and reaction between hydrogen and graphene is of fundamental importance for developing graphene-based concepts for hydrogen storage and for the chemical functionalization of graphene by hydrogenation. Recently, theoretical studies of single-sided hydrogenated graphene, so called graphone, predicted it to be a promising semiconductor for applications in graphene-based electronics. Here, we report on the synthesis of graphone bound to a Ni(111) surface. We investigate the formation process by X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD), and density-functional theory calculations, showing that the hydrogenation of graphene with atomic hydrogen indeed leads to graphone, that is, a hydrogen coverage of 1 ML (4.2 wt %). The dehydrogenation of graphone reveals complex desorption processes that are attributed to coverage-dependent changes in the activation energies for the associative desorption of hydrogen as molecular H2 .

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201404938DOI Listing

Publication Analysis

Top Keywords

hydrogenation graphene
8
graphene
5
hydrogen
5
reversible hydrogenation
4
graphene ni111-synthesis
4
ni111-synthesis "graphone"
4
"graphone" understanding
4
understanding adsorption
4
adsorption reaction
4
reaction hydrogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!