Vitamin D₃ metabolites enhance the NLRP3-dependent secretion of IL-1β from human THP-1 monocytic cells.

J Cell Biochem

Department of Biochemistry & Molecular Biology, University of Calgary, 3280, Hospital Drive, NW, Calgary, AB, T2N 4Z6, Canada.

Published: May 2015

Vitamin D3 has emerged as an important regulator of the immune system. With metabolic enzymes for vitamin D3 activation and vitamin D receptors (VDR) now identified in a variety of immune cells, the active vitamin D3 metabolite 1,25(OH)2D3, is thought to possess immunomodulatory properties. We examined whether 1,25(OH)2D3 might also enhance the NLRP3-dependent release of mature IL-1β from macrophages. PMA-differentiated THP-1 cells were stimulated with vitamin D3 metabolites and assessed for CYP27, CYP24, NLRP3, ASC, pro-caspase-1 expression by western blot and real-time qPCR as well as inflammasome activation with pro-inflammatory cytokine IL-1β release measured by ELISA. Exposure to 1,25(OH)2D3 had no effect on the basal expression levels of VDR; however, CYP27A1 transcript was suppressed and CYP24A1 transcript was substantively elevated. Both 1,25(OH)2D3 - and 25(OH)D3 induced IL-1β release from THP-1 cells, and these effects were blocked with application of the caspase-1 inhibitor YVAD and the NLRP3 inhibitors glyburide and Bay 11-7082. Interestingly, 1,25 (OH)2D3 exposure reduced NLRP3 protein expression but had no effect on ASC or pro-caspase-1 protein levels. The increase in mature IL-1β elicited by 1,25(OH)2D3 was modest compared to that found for ATP or C. difficile toxins. However, co-treatment of THP-1 cells with ATP and 1,25(OH)2D3 resulted in more IL-1β secretion than ATP or 1,25(OH)2D3 alone.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.24985DOI Listing

Publication Analysis

Top Keywords

thp-1 cells
12
enhance nlrp3-dependent
8
mature il-1β
8
asc pro-caspase-1
8
il-1β release
8
atp 125oh2d3
8
125oh2d3
7
vitamin
6
il-1β
6
cells
5

Similar Publications

Background: Traditional Chinese medicine (TCM) is a valuable resource for drug discovery and has demonstrated excellent efficacy in treating inflammatory diseases. This study aimed to develop a universal gene signature-based strategy for high-throughput discovery of anti-inflammatory drugs, especially Traditional Chinese medicine (TCM).

Methods: The disease gene signature of liposaccharide-stimulated THP-1 cells and drug gene signatures of 655 drug candidates were established via sequencing.

View Article and Find Full Text PDF

Dynamin-Related Protein 1 Orchestrates Inflammatory Responses in Periodontal Macrophages via Interaction With Hexokinase 1.

J Clin Periodontol

January 2025

Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.

Aim: To explore the potential roles of mitochondrial dysfunction in the initiation of inflammation in periodontal macrophages and to determine the mechanism underlying the involvement of dynamin-related protein 1 (Drp1) in macrophage inflammatory responses through its interaction with hexokinase 1 (HK1).

Materials And Methods: Gingival tissues were collected from patients diagnosed with periodontitis or from healthy volunteers. Drp1 tetramer formation and phosphorylation were analysed using western blot.

View Article and Find Full Text PDF

Group B (GBS) is a major cause of fetal and neonatal mortality worldwide. Many of the adverse effects of invasive GBS are associated with inflammation; therefore, understanding bacterial factors that promote inflammation is of critical importance. Membrane vesicles (MVs), which are produced by many bacteria, may modulate host inflammatory responses.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) presents a range of extraintestinal manifestations, notably including oral cavity involvement. The mechanisms underlying oral-gut crosstalk in IBD are not fully understood. Exosomes, found in various body fluids such as saliva, play an unclear role in IBD that requires further exploration.

View Article and Find Full Text PDF

Background/aim: No specific pharmacological treatment regimen for idiopathic pulmonary fibrosis (IPF) exists. Therefore, new antiinflammatory therapeutic strategies are needed. Cannabinoids (CBs), known for their inflammation-modulating and antifibrotic effects, may be potential medication candidates for treating IPF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!