Influence of coordinative compounds of germanium (IV) and stanum (IV) (complexes of germanium (IV) with nicotinamide (Nad) [GeCl2(Nad)4]Cl2 (1) and complexes of stanum (IV) with 2-hydroxybenzoilhydrazone 4-dimetylaminobenzaldehide (2-OH-HBdb) [SnCl4(2-OH-Bdb-H)] (2), 3-hydroxy-2-naphtoilhydrazone 2-hydroxynaphtaldehide (3-OH-H2Lnf) [SnCl3(3-OH-HLnf)] (3) and izonicotinoilhydrazone 2-hydroxyibenzaldehide [SnCl3 (Is·H)] (4) on activity of peptidases 1 and 2 Bacillus thuringiensis, α-L-rhamnosidase Cryptococcus albidus, Eupenicillium erubescens and α-amylase Aspergillus flavus var. oryzae. Results testify that all studied compounds differ on their influence on activity of the enzymes tested: significantly don't change elastolytic activity of peptidases 1 and 2 B. thuringiensis, completely inhibit A. flavus var. oryzae amylase, activate or oppress of α-L-rhamnosidase C. albidus and E. erubescens. Considerable differences in compounds (3, 4) on activity observed in case of the last. It's possible that peculiarity of influence (1) in compare with (2-4) is connected with existence of different central atoms of complexants: germanium (IV) (1) and stanum (IV) (2-4). A certain analogy in oppression of C. albidus α-L-rhamnosidase by compounds (1) and (4) can explain with presence of a pyridinic ring at molecules of their ligands. The less activsty displayed compound (2) with coordinative knot {SnCl4ON}. Nature of compounds (3, 4) activity was absolutely different: essential increase of activity of C. albidus α-L-rhamnosidase and full oppression of E. erubescens α-L-rhamnosidase by compound (3), while the action of compound (4) was feed back. Taking into account identical coordination knot {SnCl3O2N} the major role in this case play change of a hydrazide fragment in molecules of their ligands.

Download full-text PDF

Source

Publication Analysis

Top Keywords

compounds germanium
8
germanium stanum
8
activity peptidases
8
flavus var
8
var oryzae
8
compounds activity
8
albidus α-l-rhamnosidase
8
molecules ligands
8
activity
7
compounds
6

Similar Publications

Carbon-carbon bond formation and cleavage at redox active bis(pyridylimino)isoindole (BPI) germylene compounds.

Dalton Trans

January 2025

Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Facultad de Química, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, 41092 Sevilla, Spain.

Redox-active ligands provide alternative reaction pathways by facilitating redox events. Among these, tridentate bis(piridylimino)isoindole (BPI) fragments offer great potential, though their redox-active behaviour remains largely underdeveloped. We describe herein a family of BPI germanium(II) complexes and the study of their redox properties.

View Article and Find Full Text PDF

The title compound is a germanium-based hybrid metal halide that represents a less-toxic alternative to more popular lead-based analogues in optoelectronic applications. {(2-ICHNH)[GeI]} is composed of infinite inorganic layers that are formed by [GeI] octa-hedra connected in a corner-sharing manner with four equatorial I atoms. The organic (2-ICHNH) cations inter-leave the inorganic layers.

View Article and Find Full Text PDF

High-pressure, high-temperature synthesis at 12 GPa between 750 and 1000 °C for 30 to 300 min yields the last missing rare-earth metal monogermanide, YbGe. Powder and single-crystal X-ray diffraction measurements reveal that the compound crystallizes in a FeB-type structure (space group Pnma, a=7.901(2) Å, b=3.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are an ever-growing hazard for health and environment due to their increased emissions and accumulation in the air. Quantum cascade laser-based infrared (QCL-IR) sensors hold significant promise for gas monitoring, thanks to their compact, rugged design, high laser intensity, and high molecule-specific detection capabilities within the mid-infrared spectrum's fingerprint region. In this work, tunable external cavity QCLs were complemented by an innovative germanium-on-silicon integrated optics waveguide sensing platform with integrated microlenses for efficient backside optical interfacing for the tunable laser spectrometer.

View Article and Find Full Text PDF

Terphenylgermanium Ar*Ge [Ar*=CH(2,6-Trip), Trip=2,4,6-CHiPr] was found to act as a novel μ-Ge-bis(hexahapto-Trip) bridging ligand. Deprotonated terphenyl germanium trihydride [Li(thf)][Ar*GeH] (1) undergoes reductive elimination and transfer of hydrogen in reaction with dimeric [(COD)RhCl] to yield the dinuclear complex [Ar*GeRh(COE)RhCl(COD)] (2). Subsequent chloride abstraction from compound 2 using Na[BAr ] or Li[Al(OBu)] results in the cationic complexes [Ar*GeRh(COE)Rh(COD)][WCA] (3) {WCA: [BAr ] (Ar=CH-3,5-(CF)), [Al(OBu)]}.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!