The anticancer efficacy of ursolic acid (UA) was limited by poor water solubility, non-specific tumor distribution, and low bioavailability. To overcome this problem, polyamidoamine (PAMAM) conjugated with UA and folic acid (FA) as novel dendrimeric prodrugs were designed and successfully synthesized by a concise one-pot synthetic approach. Both FA and UA were covalently conjugated to the surface of PAMAM through acid-labile ester bonds and the covalently linked UA could be hydrolysed either in acidic (pH 5.4) or in neutral (pH 7.4) PBS solution. The cellular uptake study indicated that the presence of FA enhanced uptake of the dendrimeric prodrugs in folate receptor (FR) over-expressing Hela cells. The enhanced cellular uptake could be due to the electrostatic absorptive endocytosis and FR-mediated endocytosis. In contrast, for HepG2 cells, a FR-negative cell line, FA conjugation on the surface of the dendrimer showed no effect on the cellular uptake. In MTT assay and cell cycle analysis, FA-modified dendrimeric prodrugs showed significantly enhanced toxicity than non-FA-modified ones in Hela cells. These results suggested that FA-modified dendrimeric UA prodrugs have the potential for targeted delivery of UA into cancer cells to improve its anti-tumor efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2015.01.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!