Cabozantinib (XL184) is a novel small molecule inhibitor of receptor tyrosine kinases (RTKs) targeted at mesenchymal-epithelial transition factor (MET). In order to study the pharmacokinetics and tissue distribution in rat, a specific ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed with midazolam as internal standard. The calibration curves in plasma and tissues were linear in the range of 5-5000ng/mL (r(2)>0.99). The recoveries were better than 80.4% and matrix effects ranged from 96.9% to 105.1%. Then, the developed UPLC-MS/MS method was applied to determine the concentration of XL184 in blood and tissues. The pharmacokinetics of four different dosages (iv 5, 10mg/kg and ig 15, 30mg/kg) revealed that XL184 was eliminated slowly, the t1/2 was longer than 10h and the absolute bioavailability was 25.6±8.3%. The concentration distribution of XL184 in tissues was liver>lung>kidney>spleen>heart. Based on the concentration-time of XL184 in tissues, a BP-ANN distribution model was developed with good performance, and can be used to predict the concentration of XL184 in tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2015.01.020 | DOI Listing |
Clin Cancer Res
January 2022
Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland.
Purpose: Soft-tissue sarcomas (STS) are a rare, heterogeneous group of mesenchymal tumors. For decades the mainstay of treatment for advanced, unresectable STS has been palliative chemotherapy. High levels of activated MET receptor have been reported in various sarcoma cell lines, together with elevated vascular endothelial growth factor (VEGF) levels in patients with STS, suggesting that dual targeting of the VEGF and MET pathways with the multi-receptor tyrosine kinase inhibitor cabozantinib would result in clinical benefit in this population.
View Article and Find Full Text PDFFront Oncol
February 2021
Winship Cancer Institute of Emory University, Atlanta, GA, United States.
Introduction: Cabozantinib (XL-184) is a small molecule inhibitor of the tyrosine kinases c-Met, AXL, and VEGFR2 that has been shown to reduce tumor growth, metastasis, and angiogenesis. After the promising results from the METEOR and CABOSUN trials, cabozantinib was approved for use in the first- and second-line setting in patients with advanced RCC. Previously, targeted therapies have been used in the neoadjuvant setting for tumor size reduction and facilitating nephrectomies.
View Article and Find Full Text PDFBiomed Pharmacother
November 2018
Department of Oncology, People's Hospital of Rizhao, Rizhao, Shandong, 276826, China.
Vascular endothelial growth factor (VEGF) signaling promotes angiogenesis by stimulating the migration and proliferation of endothelial cells. The aim of this study was to investigate the expression of Survivin and VEGF receptor 1/2/3 (VEGFR 1/2/3) in esophageal carcinoma tissues (ECTs), and to explore the therapy effect of the suppression of VEGFR2 signaling. Here, we found that VEGFR2 and Survivin had high expressions and a significant correlation (r = 0.
View Article and Find Full Text PDFMol Cancer Ther
March 2018
Clinical Pharmacodynamics Biomarker Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland.
The development of molecularly targeted agents has benefited from use of pharmacodynamic markers to identify "biologically effective doses" (BED) below MTDs, yet this knowledge remains underutilized in selecting dosage regimens and in comparing the effectiveness of targeted agents within a class. We sought to establish preclinical proof-of-concept for such pharmacodynamics-based BED regimens and effectiveness comparisons using MET kinase small-molecule inhibitors. Utilizing pharmacodynamic biomarker measurements of MET signaling (tumor pYMET/total MET ratio) in a phase 0-like preclinical setting, we developed optimal dosage regimens for several MET kinase inhibitors and compared their antitumor efficacy in a -amplified gastric cancer xenograft model (SNU-5).
View Article and Find Full Text PDFNanomedicine
October 2016
Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. Electronic address:
c-Met pathway is implicated in the resistance to anti-VEGF therapy in renal cell carcinoma (RCC). However, clinical translation of therapies targeting these pathways has been limited due to dose-limiting toxicities, feedback signaling, and low intratumoral drug accumulation. Here, we developed liposomes encapsulating a multi-receptor tyrosine kinase inhibitor (XL184) to explore the possibility of improving intratumoral concentration, enhancing antitumor efficacy and reducing toxicities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!