This study aimed at in vivo visualization of cyclooxygenase-2 (COX-2) by optical imaging using a representative compound of a class of autofluorescent 2,3-diaryl-substituted indole-based selective COX-2 inhibitors (2,3-diaryl-indole coxibs). COX-2 was successfully visualized in mice models with phorbol myristate ester (TPA)-induced inflammation or bearing xenografted human melanoma cells by 2-[4-(aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-1H-indole (C1). COX-2 protein expression in both TPA-induced inflammatory sites and human melanoma xenografts was confirmed by immunoblotting. Control experiments using surrogate markers, sham injections, and non-COX-2 expressing melanoma cells further confirmed specificity of tissue association of C1. The merging of therapeutic and diagnostic properties of 2,3-diaryl-indole coxibs may widen the range of applications of COX-2-targeted treatment, e.g., for in situ-guided surgery and ex vivo diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2015.01.057 | DOI Listing |
Transl Vis Sci Technol
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
The introduction of optical coherence tomography (OCT) in the 1990s revolutionized diagnostic ophthalmic imaging. Initially, OCT's role was primarily in the adult ambulatory ophthalmic clinics. Subsequent advances in handheld form factors, integration into surgical microscopes, and robotic assistance have expanded OCT's utility and impact outside of its initial environment in the adult outpatient ophthalmic clinic.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom.
Purpose: To investigate the effect of average intraocular pressure (IOP) on the true rate of glaucoma progression (RoP) in the United Kingdom Glaucoma Treatment Study (UKGTS).
Methods: UKGTS participants were randomized to placebo or Latanoprost drops and monitored for up to two years with visual field tests (VF, 24-2 SITA standard), IOP measurements, and optic nerve imaging. We included eyes with at least three structural or functional assessments (VF with <15% false-positive errors).
Cornea
January 2025
Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA.
Purpose: To report on optical coherence tomography angiography (OCTA) in patients with a type 1 Boston keratoprosthesis (KPro) and determine its feasibility through assessment of imaging artifacts.
Methods: KPro and non-KPro subjects were matched for age, gender, and glaucoma diagnosis. OCTA images of the peripapillary optic nerve were obtained, reviewed by 2 readers masked to the diagnosis for artifacts and usability, and used for microvascular measurements.
Retin Cases Brief Rep
June 2024
Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905.
Purpose: To report the rare clinical, optical coherence tomography (OCT), and OCT-angiography findings of a visually significant choroidal neovascular membrane (CNV) in the setting of focal choroidal excavation (FCE) in a child.
Methods: Case report and literature review.
Results: A 9-year-old girl with FCE-related central CNV based on clinical findings and multimodal imaging.
Anal Chem
January 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
Photodynamic therapy is a highly promising method for cancer adjuvant treatment. However, the current research on the microscopic changes during the photodynamic therapy process is still quite limited, which seriously impedes the deep understanding of the procedure. For this purpose, a novel polarity-responsive probe, , with excellent mitochondrial targeting and anchoring capabilities has been rationally designed and synthesized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!