Alternative molecular formats and therapeutic applications for bispecific antibodies.

Mol Immunol

Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:

Published: October 2015

Bispecific antibodies are on the cusp of coming of age as therapeutics more than half a century after they were first described. Two bispecific antibodies, catumaxomab (Removab(®), anti-EpCAM×anti-CD3) and blinatumomab (Blincyto(®), anti-CD19×anti-CD3) are approved for therapy, and >30 additional bispecific antibodies are currently in clinical development. Many of these investigational bispecific antibody drugs are designed to retarget T cells to kill tumor cells, whereas most others are intended to interact with two different disease mediators such as cell surface receptors, soluble ligands and other proteins. The modular architecture of antibodies has been exploited to create more than 60 different bispecific antibody formats. These formats vary in many ways including their molecular weight, number of antigen-binding sites, spatial relationship between different binding sites, valency for each antigen, ability to support secondary immune functions and pharmacokinetic half-life. These diverse formats provide great opportunity to tailor the design of bispecific antibodies to match the proposed mechanisms of action and the intended clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2015.01.003DOI Listing

Publication Analysis

Top Keywords

bispecific antibodies
20
bispecific antibody
8
bispecific
7
antibodies
6
alternative molecular
4
formats
4
molecular formats
4
formats therapeutic
4
therapeutic applications
4
applications bispecific
4

Similar Publications

Background: Multiple myeloma (MM) is an incurable plasma cell malignancy with increasing global incidence. Chimeric antigen receptor (CAR) T-cell therapy targeting BCMA has shown efficacy in relapsed or refractory MM, but it faces resistance due to antigen loss and the tumor microenvironment. Bispecific T-cell engaging (BITE) antibodies also encounter clinical challenges, including short half-lives requiring continuous infusion and potential toxicities.

View Article and Find Full Text PDF

A humanized anti-MSLN×4-1BB bispecific antibody exhibits potent antitumour activity through 4-1BB signaling activation and fc function without systemic toxicity.

J Transl Med

January 2025

Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China.

Background: Agonistic monoclonal antibodies targeting 4-1BB/CD137 have shown preclinical promise, but their clinical development has been limited by severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy.

Methods: A novel anti-MSLN×4-1BB bispecific antibody (bsAb) was generated via antibody engineering, and its affinity and activity were detected via enzyme-linked immunosorbent assay (ELISA), flow cytometry, and T-cell activation and luciferase reporter assays.

View Article and Find Full Text PDF

Autoimmune diseases arise from immune system dysfunction that immune cells mistakenly attack the body's own tissues, resulting in systemic disorders or localized lesions such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Autoreactive B cells play a critical role in the pathogenesis of many autoimmune diseases and B cell depletion using anti-CD20 monoclonal antibody (mAb) has been shown to effectively mitigate disease progression in both preclinical and clinical studies. Recently, bispecific antibody (bsAb) targeting CD20/CD3 have demonstrated substantial clinical benefits in the treatment of various hematologic malignancies.

View Article and Find Full Text PDF

Bispecific antibodies (BsAbs) have emerged as crucial therapeutic agents for patients with relapsed/refractory diffuse large B-cell lymphoma, multiple myeloma, and most recently, lung cancer. These therapies have demonstrated remarkable efficacy in clinical trials; however, multidisciplinary collaboration is essential to ensure optimal patient outcomes amid the operational complexities associated with BsAb therapy. As BsAbs are being prepared for broader adoption, clinicians and treatment centers must navigate operational challenges, including financial considerations, patient selection, caregiver involvement, and transitions of care.

View Article and Find Full Text PDF

Background: SL-172154 is a hexameric fusion protein adjoining the extracellular domain of SIRPα to the extracellular domain of CD40L via an inert IgG-derived Fc domain. In preclinical studies, a murine equivalent SIRPα-Fc-CD40L fusion protein provided superior antitumor immunity in comparison to CD47- and CD40-targeted antibodies. A first-in-human phase I trial of SL-172154 was conducted in patients with platinum-resistant ovarian cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!